{"title":"活动家:数据集标签的新框架","authors":"Jack O'Neill, Sarah Jane Delany, Brian Mac Namee","doi":"10.21427/D7QK8M","DOIUrl":null,"url":null,"abstract":"Acquiring labels for large datasets can be a costly and timeconsuming process. This has motivated the development of the semisupervised learning problem domain, which makes use of unlabelled data — in conjunction with a small amount of labelled data — to infer the correct labels of a partially labelled dataset. Active Learning is one of the most successful approaches to semi-supervised learning, and has been shown to reduce the cost and time taken to produce a fully labelled dataset. In this paper we present Activist ; a free, online, state-of-theart platform which leverages active learning techniques to improve the efficiency of dataset labelling. Using a simulated crowd-sourced label gathering scenario on a number of datasets, we show that the Activist software can speed up, and ultimately reduce the cost of label acquisition.","PeriodicalId":286718,"journal":{"name":"Irish Conference on Artificial Intelligence and Cognitive Science","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Activist: A New Framework for Dataset Labelling\",\"authors\":\"Jack O'Neill, Sarah Jane Delany, Brian Mac Namee\",\"doi\":\"10.21427/D7QK8M\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acquiring labels for large datasets can be a costly and timeconsuming process. This has motivated the development of the semisupervised learning problem domain, which makes use of unlabelled data — in conjunction with a small amount of labelled data — to infer the correct labels of a partially labelled dataset. Active Learning is one of the most successful approaches to semi-supervised learning, and has been shown to reduce the cost and time taken to produce a fully labelled dataset. In this paper we present Activist ; a free, online, state-of-theart platform which leverages active learning techniques to improve the efficiency of dataset labelling. Using a simulated crowd-sourced label gathering scenario on a number of datasets, we show that the Activist software can speed up, and ultimately reduce the cost of label acquisition.\",\"PeriodicalId\":286718,\"journal\":{\"name\":\"Irish Conference on Artificial Intelligence and Cognitive Science\",\"volume\":\"238 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irish Conference on Artificial Intelligence and Cognitive Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21427/D7QK8M\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irish Conference on Artificial Intelligence and Cognitive Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21427/D7QK8M","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acquiring labels for large datasets can be a costly and timeconsuming process. This has motivated the development of the semisupervised learning problem domain, which makes use of unlabelled data — in conjunction with a small amount of labelled data — to infer the correct labels of a partially labelled dataset. Active Learning is one of the most successful approaches to semi-supervised learning, and has been shown to reduce the cost and time taken to produce a fully labelled dataset. In this paper we present Activist ; a free, online, state-of-theart platform which leverages active learning techniques to improve the efficiency of dataset labelling. Using a simulated crowd-sourced label gathering scenario on a number of datasets, we show that the Activist software can speed up, and ultimately reduce the cost of label acquisition.