Jingjing Tong, Shuang Liu, Yufeng Ke, Bin Gu, Feng He, B. Wan, Dong Ming
{"title":"基于脑电图的非线性特征情感识别","authors":"Jingjing Tong, Shuang Liu, Yufeng Ke, Bin Gu, Feng He, B. Wan, Dong Ming","doi":"10.1109/ICAWST.2017.8256518","DOIUrl":null,"url":null,"abstract":"Emotions are ubiquitous components of everyday life, as they influence behavior to a large extent. And Emotion recognition is one of the most important and necessary parts in the field of emotion research. Its accuracy relies heavily on the ability to generate representative features. However, this is a very challenging problem. In this study, EEG nonlinear features, power spectrum entropy and correlation dimension, were extracted to differentiate emotions. International Affective Picture System (IAPS) pictures with different valence but similar arousal level were used to induce the emotions with 8 valence levels. The results showed that the valence levels were positively correlated with these two features, especially in the frontal lobe. Based on the two features, SVM gave an average accuracy of 82.22%. Analyzing the nonlinear features of EEGs is an efficient way to classify emotions.","PeriodicalId":378618,"journal":{"name":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"EEG-based emotion recognition using nonlinear feature\",\"authors\":\"Jingjing Tong, Shuang Liu, Yufeng Ke, Bin Gu, Feng He, B. Wan, Dong Ming\",\"doi\":\"10.1109/ICAWST.2017.8256518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotions are ubiquitous components of everyday life, as they influence behavior to a large extent. And Emotion recognition is one of the most important and necessary parts in the field of emotion research. Its accuracy relies heavily on the ability to generate representative features. However, this is a very challenging problem. In this study, EEG nonlinear features, power spectrum entropy and correlation dimension, were extracted to differentiate emotions. International Affective Picture System (IAPS) pictures with different valence but similar arousal level were used to induce the emotions with 8 valence levels. The results showed that the valence levels were positively correlated with these two features, especially in the frontal lobe. Based on the two features, SVM gave an average accuracy of 82.22%. Analyzing the nonlinear features of EEGs is an efficient way to classify emotions.\",\"PeriodicalId\":378618,\"journal\":{\"name\":\"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2017.8256518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAWST.2017.8256518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EEG-based emotion recognition using nonlinear feature
Emotions are ubiquitous components of everyday life, as they influence behavior to a large extent. And Emotion recognition is one of the most important and necessary parts in the field of emotion research. Its accuracy relies heavily on the ability to generate representative features. However, this is a very challenging problem. In this study, EEG nonlinear features, power spectrum entropy and correlation dimension, were extracted to differentiate emotions. International Affective Picture System (IAPS) pictures with different valence but similar arousal level were used to induce the emotions with 8 valence levels. The results showed that the valence levels were positively correlated with these two features, especially in the frontal lobe. Based on the two features, SVM gave an average accuracy of 82.22%. Analyzing the nonlinear features of EEGs is an efficient way to classify emotions.