0.5 THz SiGe HBT技术中器件互连导致的fT和fmax退化的研究

A. Ulusoy, R. Schmid, S. Zeinolabedinzadeh, W. Khan, M. Kaynak, B. Tillack, J. Cressler
{"title":"0.5 THz SiGe HBT技术中器件互连导致的fT和fmax退化的研究","authors":"A. Ulusoy, R. Schmid, S. Zeinolabedinzadeh, W. Khan, M. Kaynak, B. Tillack, J. Cressler","doi":"10.1109/BCTM.2014.6981317","DOIUrl":null,"url":null,"abstract":"In this paper, the authors investigate the impact of device interconnect parasitics on the two most commonly-accepted RF small-signal figures-of-merit, the transit frequency (fT) and the maximum frequency of oscillation (fmax) in state-of-the-art SiGe HBT technology. Simulations and measurement results are provided as a guideline to design an optimum device interconnect scheme to achieve a high fmax. Test structures were characterized with de-embedding structures providing reference planes at the device level and at the top-metal level. Measurements show an fmax of 450 GHz at the device level and at the top-metal level a degradation of only 4% to 430 GHz. These results demonstrate a significant advantage of the SiGe HBT technology compared to ultra-scaled CMOS technology at device speeds approaching a terahertz, and to the best of the authors' knowledge, demonstrate the highest fmax reported at the top-metal level in any state-of-the-art silicon technology.","PeriodicalId":423269,"journal":{"name":"2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An investigation of fT and fmax degradation due to device interconnects in 0.5 THz SiGe HBT technology\",\"authors\":\"A. Ulusoy, R. Schmid, S. Zeinolabedinzadeh, W. Khan, M. Kaynak, B. Tillack, J. Cressler\",\"doi\":\"10.1109/BCTM.2014.6981317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the authors investigate the impact of device interconnect parasitics on the two most commonly-accepted RF small-signal figures-of-merit, the transit frequency (fT) and the maximum frequency of oscillation (fmax) in state-of-the-art SiGe HBT technology. Simulations and measurement results are provided as a guideline to design an optimum device interconnect scheme to achieve a high fmax. Test structures were characterized with de-embedding structures providing reference planes at the device level and at the top-metal level. Measurements show an fmax of 450 GHz at the device level and at the top-metal level a degradation of only 4% to 430 GHz. These results demonstrate a significant advantage of the SiGe HBT technology compared to ultra-scaled CMOS technology at device speeds approaching a terahertz, and to the best of the authors' knowledge, demonstrate the highest fmax reported at the top-metal level in any state-of-the-art silicon technology.\",\"PeriodicalId\":423269,\"journal\":{\"name\":\"2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCTM.2014.6981317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCTM.2014.6981317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,作者研究了器件互连寄生对最先进的SiGe HBT技术中两个最普遍接受的射频小信号参数,即传输频率(fT)和最大振荡频率(fmax)的影响。仿真和测量结果为设计最佳的器件互连方案提供了指导,以达到较高的fmax。测试结构的特点是脱嵌结构在器件级和顶层金属级提供参考平面。测量结果显示,在器件级,fmax为450 GHz,在顶极金属级,衰减仅为4%至430 GHz。这些结果表明,在器件速度接近1太赫兹时,SiGe HBT技术与超尺度CMOS技术相比具有显着优势,并且据作者所知,在任何最先进的硅技术中,在顶级金属水平上显示了最高的fmax。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An investigation of fT and fmax degradation due to device interconnects in 0.5 THz SiGe HBT technology
In this paper, the authors investigate the impact of device interconnect parasitics on the two most commonly-accepted RF small-signal figures-of-merit, the transit frequency (fT) and the maximum frequency of oscillation (fmax) in state-of-the-art SiGe HBT technology. Simulations and measurement results are provided as a guideline to design an optimum device interconnect scheme to achieve a high fmax. Test structures were characterized with de-embedding structures providing reference planes at the device level and at the top-metal level. Measurements show an fmax of 450 GHz at the device level and at the top-metal level a degradation of only 4% to 430 GHz. These results demonstrate a significant advantage of the SiGe HBT technology compared to ultra-scaled CMOS technology at device speeds approaching a terahertz, and to the best of the authors' knowledge, demonstrate the highest fmax reported at the top-metal level in any state-of-the-art silicon technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信