K. Gulez, H. Watanabe, F. Harashima, K. Ohnishi, H. Pastaci
{"title":"空间矢量调制的ANN(人工神经网络)驱动控制器提高了感应电机的性能,保证了谐波的降低","authors":"K. Gulez, H. Watanabe, F. Harashima, K. Ohnishi, H. Pastaci","doi":"10.1109/SICE.2000.889700","DOIUrl":null,"url":null,"abstract":"Control systems have assumed an increasingly important role in the development and advancement of modern civilization and technology. Practically, every aspect of day-to-day activities is affected by some type of control system. Thus, the space-vector technique has become a popular pulse width technique (PWM) for three-phase inverters in applications such as control of AC induction and permanent-magnet synchronous motors. Digital control structures eliminate drifts, solve complex mathematical equations and by using a programmable processor, they can be easily upgraded for new control algorithms. Digital signal processors (DSPs) go further; their high performance allows them to perform high resolution control and minimize control loop delays. These technological improvements supported by artificial neural networks (ANN) have enabled the development of really effective AC drive control with ever lower power dissipation hardware and ever more accurate control structures.","PeriodicalId":254956,"journal":{"name":"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ANN (artificial neural network) drive controller of space vector modulation increasing the performance of the induction motor and ensuring harmonic reduction\",\"authors\":\"K. Gulez, H. Watanabe, F. Harashima, K. Ohnishi, H. Pastaci\",\"doi\":\"10.1109/SICE.2000.889700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Control systems have assumed an increasingly important role in the development and advancement of modern civilization and technology. Practically, every aspect of day-to-day activities is affected by some type of control system. Thus, the space-vector technique has become a popular pulse width technique (PWM) for three-phase inverters in applications such as control of AC induction and permanent-magnet synchronous motors. Digital control structures eliminate drifts, solve complex mathematical equations and by using a programmable processor, they can be easily upgraded for new control algorithms. Digital signal processors (DSPs) go further; their high performance allows them to perform high resolution control and minimize control loop delays. These technological improvements supported by artificial neural networks (ANN) have enabled the development of really effective AC drive control with ever lower power dissipation hardware and ever more accurate control structures.\",\"PeriodicalId\":254956,\"journal\":{\"name\":\"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.2000.889700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2000.889700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ANN (artificial neural network) drive controller of space vector modulation increasing the performance of the induction motor and ensuring harmonic reduction
Control systems have assumed an increasingly important role in the development and advancement of modern civilization and technology. Practically, every aspect of day-to-day activities is affected by some type of control system. Thus, the space-vector technique has become a popular pulse width technique (PWM) for three-phase inverters in applications such as control of AC induction and permanent-magnet synchronous motors. Digital control structures eliminate drifts, solve complex mathematical equations and by using a programmable processor, they can be easily upgraded for new control algorithms. Digital signal processors (DSPs) go further; their high performance allows them to perform high resolution control and minimize control loop delays. These technological improvements supported by artificial neural networks (ANN) have enabled the development of really effective AC drive control with ever lower power dissipation hardware and ever more accurate control structures.