德语招聘广告中技能要求的细粒度提取与分类

A. Gnehm, Eva Bühlmann, Helen Buchs, S. Clematide
{"title":"德语招聘广告中技能要求的细粒度提取与分类","authors":"A. Gnehm, Eva Bühlmann, Helen Buchs, S. Clematide","doi":"10.18653/v1/2022.nlpcss-1.2","DOIUrl":null,"url":null,"abstract":"Monitoring the development of labor market skill requirements is an information need that is more and more approached by applying text mining methods to job advertisement data. We present an approach for fine-grained extraction and classification of skill requirements from German-speaking job advertisements. We adapt pre-trained transformer-based language models to the domain and task of computing meaningful representations of sentences or spans. By using context from job advertisements and the large ESCO domain ontology we improve our similarity-based unsupervised multi-label classification results. Our best model achieves a mean average precision of 0.969 on the skill class level.","PeriodicalId":438120,"journal":{"name":"Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fine-Grained Extraction and Classification of Skill Requirements in German-Speaking Job Ads\",\"authors\":\"A. Gnehm, Eva Bühlmann, Helen Buchs, S. Clematide\",\"doi\":\"10.18653/v1/2022.nlpcss-1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring the development of labor market skill requirements is an information need that is more and more approached by applying text mining methods to job advertisement data. We present an approach for fine-grained extraction and classification of skill requirements from German-speaking job advertisements. We adapt pre-trained transformer-based language models to the domain and task of computing meaningful representations of sentences or spans. By using context from job advertisements and the large ESCO domain ontology we improve our similarity-based unsupervised multi-label classification results. Our best model achieves a mean average precision of 0.969 on the skill class level.\",\"PeriodicalId\":438120,\"journal\":{\"name\":\"Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.nlpcss-1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.nlpcss-1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

监测劳动力市场技能需求的发展是一种信息需求,越来越多的人将文本挖掘方法应用于招聘广告数据。我们提出了一种从德语招聘广告中细粒度提取和分类技能要求的方法。我们将预训练的基于转换器的语言模型应用于计算句子或跨度的有意义表示的领域和任务。通过使用招聘广告上下文和大型ESCO领域本体,改进了基于相似度的无监督多标签分类结果。我们的最佳模型在技能等级水平上的平均精度为0.969。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-Grained Extraction and Classification of Skill Requirements in German-Speaking Job Ads
Monitoring the development of labor market skill requirements is an information need that is more and more approached by applying text mining methods to job advertisement data. We present an approach for fine-grained extraction and classification of skill requirements from German-speaking job advertisements. We adapt pre-trained transformer-based language models to the domain and task of computing meaningful representations of sentences or spans. By using context from job advertisements and the large ESCO domain ontology we improve our similarity-based unsupervised multi-label classification results. Our best model achieves a mean average precision of 0.969 on the skill class level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信