使用全光输入掩模的增强光子时间拉伸储层计算

Yuanli Yue, Shouju Liu, Yanrong Zhai, Chao Wang
{"title":"使用全光输入掩模的增强光子时间拉伸储层计算","authors":"Yuanli Yue, Shouju Liu, Yanrong Zhai, Chao Wang","doi":"10.1109/IPC53466.2022.9975723","DOIUrl":null,"url":null,"abstract":"Input masks are essential in reservoir computing to enhance performance. Here we report a novel all-optical masking scheme for photonics time-stretch reservoir computing based on optical spectral filtering. This approach overcomes the electronic bottleneck in digital temporal masking and offers better performance in classification tasks.","PeriodicalId":202839,"journal":{"name":"2022 IEEE Photonics Conference (IPC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced photonic time-stretch reservoir computing using all-optical input masks\",\"authors\":\"Yuanli Yue, Shouju Liu, Yanrong Zhai, Chao Wang\",\"doi\":\"10.1109/IPC53466.2022.9975723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Input masks are essential in reservoir computing to enhance performance. Here we report a novel all-optical masking scheme for photonics time-stretch reservoir computing based on optical spectral filtering. This approach overcomes the electronic bottleneck in digital temporal masking and offers better performance in classification tasks.\",\"PeriodicalId\":202839,\"journal\":{\"name\":\"2022 IEEE Photonics Conference (IPC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Photonics Conference (IPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPC53466.2022.9975723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Photonics Conference (IPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPC53466.2022.9975723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

输入掩模在油藏计算中是必不可少的,以提高性能。本文报道了一种基于光谱滤波的光子学时间拉伸储层计算全光掩蔽方案。该方法克服了数字时间掩蔽的电子瓶颈,在分类任务中提供了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced photonic time-stretch reservoir computing using all-optical input masks
Input masks are essential in reservoir computing to enhance performance. Here we report a novel all-optical masking scheme for photonics time-stretch reservoir computing based on optical spectral filtering. This approach overcomes the electronic bottleneck in digital temporal masking and offers better performance in classification tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信