基于gaborface的2DPCA和集成多通道模型(2D)2PCA分类的人脸识别

Lin Wang, Yongping Li, Chengbo Wang, Hongzhou Zhang
{"title":"基于gaborface的2DPCA和集成多通道模型(2D)2PCA分类的人脸识别","authors":"Lin Wang, Yongping Li, Chengbo Wang, Hongzhou Zhang","doi":"10.1109/CISDA.2007.368128","DOIUrl":null,"url":null,"abstract":"This paper introduces Gaborface-based 2DPCA and (2D)2PCA classification method based on 2D Gaborface matrices rather than transformed ID feature vectors. Two kinds of strategies to use the bank of Gaborfaces are proposed: ensemble Gaborface representation (EGFR) and multichannel Gaborface representation (MGFR). The feasibility of our method is proved with the experimental results on the ORL and Yale databases. In particular, the MGFR-based (2D)2 PCA method achieves 100% recognition accuracy for ORL database, and 98.89% accuracy for Yale database with five training samples per class","PeriodicalId":403553,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence in Security and Defense Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Face Recognition using Gaborface-based 2DPCA and (2D)2PCA Classification with Ensemble and Multichannel Model\",\"authors\":\"Lin Wang, Yongping Li, Chengbo Wang, Hongzhou Zhang\",\"doi\":\"10.1109/CISDA.2007.368128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces Gaborface-based 2DPCA and (2D)2PCA classification method based on 2D Gaborface matrices rather than transformed ID feature vectors. Two kinds of strategies to use the bank of Gaborfaces are proposed: ensemble Gaborface representation (EGFR) and multichannel Gaborface representation (MGFR). The feasibility of our method is proved with the experimental results on the ORL and Yale databases. In particular, the MGFR-based (2D)2 PCA method achieves 100% recognition accuracy for ORL database, and 98.89% accuracy for Yale database with five training samples per class\",\"PeriodicalId\":403553,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence in Security and Defense Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence in Security and Defense Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISDA.2007.368128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence in Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2007.368128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文介绍了基于Gaborface的2DPCA和基于二维Gaborface矩阵而不是变换ID特征向量的(2D)2PCA分类方法。提出了两种使用Gaborface库的策略:集成Gaborface表示(EGFR)和多通道Gaborface表示(MGFR)。在ORL和Yale数据库上的实验结果证明了该方法的可行性。其中,基于mgfr的(2D)2 PCA方法对ORL数据库的识别准确率达到100%,对每类5个训练样本的Yale数据库的识别准确率达到98.89%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Recognition using Gaborface-based 2DPCA and (2D)2PCA Classification with Ensemble and Multichannel Model
This paper introduces Gaborface-based 2DPCA and (2D)2PCA classification method based on 2D Gaborface matrices rather than transformed ID feature vectors. Two kinds of strategies to use the bank of Gaborfaces are proposed: ensemble Gaborface representation (EGFR) and multichannel Gaborface representation (MGFR). The feasibility of our method is proved with the experimental results on the ORL and Yale databases. In particular, the MGFR-based (2D)2 PCA method achieves 100% recognition accuracy for ORL database, and 98.89% accuracy for Yale database with five training samples per class
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信