{"title":"从随机字符串进行非随机化","authors":"H. Buhrman, L. Fortnow, M. Koucký, B. Loff","doi":"10.1109/CCC.2010.15","DOIUrl":null,"url":null,"abstract":"In this paper we show that BPP is truth-table reducible to the set of Kolmogorov random strings R_K. It was previously known that PSPACE, and hence BPP is Turing-reducible to R_K. The earlier proof relied on the adaptivity of the Turing-reduction to find a Kolmogorov-random string of polynomial length using the set R_K as oracle. Our new non-adaptive result relies on a new fundamental fact about the set R_K, namely each initial segment of the characteristic sequence of R_K has high Kolmogorov complexity. As a partial converse to our claim we show that strings of very high Kolmogorov-complexity when used as advice are not much more useful than randomly chosen strings.","PeriodicalId":328781,"journal":{"name":"2010 IEEE 25th Annual Conference on Computational Complexity","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Derandomizing from Random Strings\",\"authors\":\"H. Buhrman, L. Fortnow, M. Koucký, B. Loff\",\"doi\":\"10.1109/CCC.2010.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we show that BPP is truth-table reducible to the set of Kolmogorov random strings R_K. It was previously known that PSPACE, and hence BPP is Turing-reducible to R_K. The earlier proof relied on the adaptivity of the Turing-reduction to find a Kolmogorov-random string of polynomial length using the set R_K as oracle. Our new non-adaptive result relies on a new fundamental fact about the set R_K, namely each initial segment of the characteristic sequence of R_K has high Kolmogorov complexity. As a partial converse to our claim we show that strings of very high Kolmogorov-complexity when used as advice are not much more useful than randomly chosen strings.\",\"PeriodicalId\":328781,\"journal\":{\"name\":\"2010 IEEE 25th Annual Conference on Computational Complexity\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 25th Annual Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2010.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 25th Annual Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2010.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we show that BPP is truth-table reducible to the set of Kolmogorov random strings R_K. It was previously known that PSPACE, and hence BPP is Turing-reducible to R_K. The earlier proof relied on the adaptivity of the Turing-reduction to find a Kolmogorov-random string of polynomial length using the set R_K as oracle. Our new non-adaptive result relies on a new fundamental fact about the set R_K, namely each initial segment of the characteristic sequence of R_K has high Kolmogorov complexity. As a partial converse to our claim we show that strings of very high Kolmogorov-complexity when used as advice are not much more useful than randomly chosen strings.