个体观测多维散射的统计控制

{"title":"个体观测多维散射的统计控制","authors":"","doi":"10.36652/0869-4391-2022-10-476-480","DOIUrl":null,"url":null,"abstract":"The features of the multi-parameter process control based on individual observations, when sampling during monitoring is impossible due to the complexity of measurements or is not economically feasible, are considered. Monitoring of multidimensional scattering usually by using the generalized variance algorithm is carried out, however, when controlling for individual observations, a number of problems arise. An approach to estimating the covariance matrix to solve this problem is proposed.\n\nKeywords\nmultivariate statistical control, generalized variance, sliding range","PeriodicalId":309803,"journal":{"name":"Automation. Modern Techologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical control of multidimensional scattering from individual observations\",\"authors\":\"\",\"doi\":\"10.36652/0869-4391-2022-10-476-480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The features of the multi-parameter process control based on individual observations, when sampling during monitoring is impossible due to the complexity of measurements or is not economically feasible, are considered. Monitoring of multidimensional scattering usually by using the generalized variance algorithm is carried out, however, when controlling for individual observations, a number of problems arise. An approach to estimating the covariance matrix to solve this problem is proposed.\\n\\nKeywords\\nmultivariate statistical control, generalized variance, sliding range\",\"PeriodicalId\":309803,\"journal\":{\"name\":\"Automation. Modern Techologies\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation. Modern Techologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36652/0869-4391-2022-10-476-480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation. Modern Techologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36652/0869-4391-2022-10-476-480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当由于测量的复杂性或在经济上不可行而不可能在监测期间采样时,考虑了基于单个观测的多参数过程控制的特点。在对多维散射进行监测时,通常采用广义方差算法,但在控制单个观测值时,会出现许多问题。提出了一种估计协方差矩阵的方法来解决这一问题。关键词:多元统计控制;广义方差;滑动范围
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical control of multidimensional scattering from individual observations
The features of the multi-parameter process control based on individual observations, when sampling during monitoring is impossible due to the complexity of measurements or is not economically feasible, are considered. Monitoring of multidimensional scattering usually by using the generalized variance algorithm is carried out, however, when controlling for individual observations, a number of problems arise. An approach to estimating the covariance matrix to solve this problem is proposed. Keywords multivariate statistical control, generalized variance, sliding range
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信