{"title":"利用负二项平滑样条方差分析检测纵向宏基因组数据的差异丰度区间","authors":"Ahmed A. Metwally, P. Finn, Yang Dai, D. Perkins","doi":"10.1145/3107411.3107429","DOIUrl":null,"url":null,"abstract":"Metagenomic longitudinal studies have become a widely-used study design to investigate the dynamics of the microbial ecological systems and their temporal effects. One of the important questions to be addressed in longitudinal studies is the identification of time intervals when microbial features show changes in their abundance. We propose a statistical method that is based on a semi-parametric Smoothing Spline ANOVA and negative binomial distribution to model the time-course of the features between two phenotypes. We demonstrate the superior performance of our proposed method compared to the two currently existing methods using simulated data. We present the analysis results of our proposed method in an analysis of a longitudinal dataset that investigates the association between the development of type 1 diabetes in infants and the gut microbiome. The identified significant species and their specific time intervals reveal new information that can be used in improving intervention or treatment plans.","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Detection of Differential Abundance Intervals in Longitudinal Metagenomic Data Using Negative Binomial Smoothing Spline ANOVA\",\"authors\":\"Ahmed A. Metwally, P. Finn, Yang Dai, D. Perkins\",\"doi\":\"10.1145/3107411.3107429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metagenomic longitudinal studies have become a widely-used study design to investigate the dynamics of the microbial ecological systems and their temporal effects. One of the important questions to be addressed in longitudinal studies is the identification of time intervals when microbial features show changes in their abundance. We propose a statistical method that is based on a semi-parametric Smoothing Spline ANOVA and negative binomial distribution to model the time-course of the features between two phenotypes. We demonstrate the superior performance of our proposed method compared to the two currently existing methods using simulated data. We present the analysis results of our proposed method in an analysis of a longitudinal dataset that investigates the association between the development of type 1 diabetes in infants and the gut microbiome. The identified significant species and their specific time intervals reveal new information that can be used in improving intervention or treatment plans.\",\"PeriodicalId\":246388,\"journal\":{\"name\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3107411.3107429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3107429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of Differential Abundance Intervals in Longitudinal Metagenomic Data Using Negative Binomial Smoothing Spline ANOVA
Metagenomic longitudinal studies have become a widely-used study design to investigate the dynamics of the microbial ecological systems and their temporal effects. One of the important questions to be addressed in longitudinal studies is the identification of time intervals when microbial features show changes in their abundance. We propose a statistical method that is based on a semi-parametric Smoothing Spline ANOVA and negative binomial distribution to model the time-course of the features between two phenotypes. We demonstrate the superior performance of our proposed method compared to the two currently existing methods using simulated data. We present the analysis results of our proposed method in an analysis of a longitudinal dataset that investigates the association between the development of type 1 diabetes in infants and the gut microbiome. The identified significant species and their specific time intervals reveal new information that can be used in improving intervention or treatment plans.