利用负二项平滑样条方差分析检测纵向宏基因组数据的差异丰度区间

Ahmed A. Metwally, P. Finn, Yang Dai, D. Perkins
{"title":"利用负二项平滑样条方差分析检测纵向宏基因组数据的差异丰度区间","authors":"Ahmed A. Metwally, P. Finn, Yang Dai, D. Perkins","doi":"10.1145/3107411.3107429","DOIUrl":null,"url":null,"abstract":"Metagenomic longitudinal studies have become a widely-used study design to investigate the dynamics of the microbial ecological systems and their temporal effects. One of the important questions to be addressed in longitudinal studies is the identification of time intervals when microbial features show changes in their abundance. We propose a statistical method that is based on a semi-parametric Smoothing Spline ANOVA and negative binomial distribution to model the time-course of the features between two phenotypes. We demonstrate the superior performance of our proposed method compared to the two currently existing methods using simulated data. We present the analysis results of our proposed method in an analysis of a longitudinal dataset that investigates the association between the development of type 1 diabetes in infants and the gut microbiome. The identified significant species and their specific time intervals reveal new information that can be used in improving intervention or treatment plans.","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Detection of Differential Abundance Intervals in Longitudinal Metagenomic Data Using Negative Binomial Smoothing Spline ANOVA\",\"authors\":\"Ahmed A. Metwally, P. Finn, Yang Dai, D. Perkins\",\"doi\":\"10.1145/3107411.3107429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metagenomic longitudinal studies have become a widely-used study design to investigate the dynamics of the microbial ecological systems and their temporal effects. One of the important questions to be addressed in longitudinal studies is the identification of time intervals when microbial features show changes in their abundance. We propose a statistical method that is based on a semi-parametric Smoothing Spline ANOVA and negative binomial distribution to model the time-course of the features between two phenotypes. We demonstrate the superior performance of our proposed method compared to the two currently existing methods using simulated data. We present the analysis results of our proposed method in an analysis of a longitudinal dataset that investigates the association between the development of type 1 diabetes in infants and the gut microbiome. The identified significant species and their specific time intervals reveal new information that can be used in improving intervention or treatment plans.\",\"PeriodicalId\":246388,\"journal\":{\"name\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3107411.3107429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3107429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

宏基因组纵向研究已成为研究微生物生态系统动态及其时间效应的一种广泛使用的研究设计。在纵向研究中要解决的一个重要问题是确定微生物特征在其丰度上显示变化的时间间隔。我们提出了一种基于半参数平滑样条方差分析和负二项分布的统计方法来模拟两种表型之间特征的时间过程。我们用模拟数据证明了我们所提出的方法与现有的两种方法相比具有优越的性能。我们在对纵向数据集的分析中提出了我们提出的方法的分析结果,该数据集调查了婴儿1型糖尿病的发展与肠道微生物组之间的关系。已确定的重要物种及其特定的时间间隔揭示了可用于改进干预或治疗计划的新信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Differential Abundance Intervals in Longitudinal Metagenomic Data Using Negative Binomial Smoothing Spline ANOVA
Metagenomic longitudinal studies have become a widely-used study design to investigate the dynamics of the microbial ecological systems and their temporal effects. One of the important questions to be addressed in longitudinal studies is the identification of time intervals when microbial features show changes in their abundance. We propose a statistical method that is based on a semi-parametric Smoothing Spline ANOVA and negative binomial distribution to model the time-course of the features between two phenotypes. We demonstrate the superior performance of our proposed method compared to the two currently existing methods using simulated data. We present the analysis results of our proposed method in an analysis of a longitudinal dataset that investigates the association between the development of type 1 diabetes in infants and the gut microbiome. The identified significant species and their specific time intervals reveal new information that can be used in improving intervention or treatment plans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信