{"title":"Hochschild上同调,有限条件和d-Koszul代数的推广","authors":"R. Jawad, N. Snashall","doi":"10.1142/s021949882250147x","DOIUrl":null,"url":null,"abstract":"Given a finite-dimensional algebra $\\Lambda$ and $A \\geqslant 1$, we construct a new algebra $\\tilde{\\Lambda}_A$, called the stretched algebra, and relate the homological properties of $\\Lambda$ and $\\tilde{\\Lambda}_A$. We investigate Hochschild cohomology and the finiteness condition (Fg), and use stratifying ideals to show that $\\Lambda$ has (Fg) if and only if $\\tilde{\\Lambda}_A$ has (Fg). We also consider projective resolutions and apply our results in the case where $\\Lambda$ is a $d$-Koszul algebra for some $d \\geqslant 2$.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hochschild cohomology, finiteness conditions and a generalization of d-Koszul algebras\",\"authors\":\"R. Jawad, N. Snashall\",\"doi\":\"10.1142/s021949882250147x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a finite-dimensional algebra $\\\\Lambda$ and $A \\\\geqslant 1$, we construct a new algebra $\\\\tilde{\\\\Lambda}_A$, called the stretched algebra, and relate the homological properties of $\\\\Lambda$ and $\\\\tilde{\\\\Lambda}_A$. We investigate Hochschild cohomology and the finiteness condition (Fg), and use stratifying ideals to show that $\\\\Lambda$ has (Fg) if and only if $\\\\tilde{\\\\Lambda}_A$ has (Fg). We also consider projective resolutions and apply our results in the case where $\\\\Lambda$ is a $d$-Koszul algebra for some $d \\\\geqslant 2$.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s021949882250147x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021949882250147x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hochschild cohomology, finiteness conditions and a generalization of d-Koszul algebras
Given a finite-dimensional algebra $\Lambda$ and $A \geqslant 1$, we construct a new algebra $\tilde{\Lambda}_A$, called the stretched algebra, and relate the homological properties of $\Lambda$ and $\tilde{\Lambda}_A$. We investigate Hochschild cohomology and the finiteness condition (Fg), and use stratifying ideals to show that $\Lambda$ has (Fg) if and only if $\tilde{\Lambda}_A$ has (Fg). We also consider projective resolutions and apply our results in the case where $\Lambda$ is a $d$-Koszul algebra for some $d \geqslant 2$.