Hui Lu, Brendan Saltaformaggio, Cong Xu, U. Bellur, Dongyan Xu
{"title":"BASS:通过字节可寻址存储堆栈提高云块存储的I/O性能","authors":"Hui Lu, Brendan Saltaformaggio, Cong Xu, U. Bellur, Dongyan Xu","doi":"10.1145/2987550.2987557","DOIUrl":null,"url":null,"abstract":"In an Infrastructure-as-a-Service cloud, cloud block storage offers conventional, block-level storage resources via a storage area network. However, compared to local storage, this multilayered cloud storage model imposes considerable I/O overheads due to much longer I/O path in the virtualized cloud. In this paper, we propose a novel byte-addressable storage stack, BASS, to bridge the addressability gap between the storage and network stacks in cloud, and in return boost I/O performance for cloud block storage. Equipped with byte-addressability, BASS not only avails the benefits of using variable-length I/O requests that avoid unnecessary data transfer, but also enables a highly efficient non-blocking approach that eliminates the blocking of write processes. We have developed a generic prototype of BASS based on Linux storage stack, which is applicable to traditional VMs, lightweight containers and physical machines. Our extensive evaluation with micro-benchmarks, I/O traces and real-world applications demonstrates the effectiveness of BASS, with significantly improved I/O performance and reduced storage network usage.","PeriodicalId":362207,"journal":{"name":"Proceedings of the Seventh ACM Symposium on Cloud Computing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"BASS: Improving I/O Performance for Cloud Block Storage via Byte-Addressable Storage Stack\",\"authors\":\"Hui Lu, Brendan Saltaformaggio, Cong Xu, U. Bellur, Dongyan Xu\",\"doi\":\"10.1145/2987550.2987557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an Infrastructure-as-a-Service cloud, cloud block storage offers conventional, block-level storage resources via a storage area network. However, compared to local storage, this multilayered cloud storage model imposes considerable I/O overheads due to much longer I/O path in the virtualized cloud. In this paper, we propose a novel byte-addressable storage stack, BASS, to bridge the addressability gap between the storage and network stacks in cloud, and in return boost I/O performance for cloud block storage. Equipped with byte-addressability, BASS not only avails the benefits of using variable-length I/O requests that avoid unnecessary data transfer, but also enables a highly efficient non-blocking approach that eliminates the blocking of write processes. We have developed a generic prototype of BASS based on Linux storage stack, which is applicable to traditional VMs, lightweight containers and physical machines. Our extensive evaluation with micro-benchmarks, I/O traces and real-world applications demonstrates the effectiveness of BASS, with significantly improved I/O performance and reduced storage network usage.\",\"PeriodicalId\":362207,\"journal\":{\"name\":\"Proceedings of the Seventh ACM Symposium on Cloud Computing\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh ACM Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2987550.2987557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh ACM Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2987550.2987557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BASS: Improving I/O Performance for Cloud Block Storage via Byte-Addressable Storage Stack
In an Infrastructure-as-a-Service cloud, cloud block storage offers conventional, block-level storage resources via a storage area network. However, compared to local storage, this multilayered cloud storage model imposes considerable I/O overheads due to much longer I/O path in the virtualized cloud. In this paper, we propose a novel byte-addressable storage stack, BASS, to bridge the addressability gap between the storage and network stacks in cloud, and in return boost I/O performance for cloud block storage. Equipped with byte-addressability, BASS not only avails the benefits of using variable-length I/O requests that avoid unnecessary data transfer, but also enables a highly efficient non-blocking approach that eliminates the blocking of write processes. We have developed a generic prototype of BASS based on Linux storage stack, which is applicable to traditional VMs, lightweight containers and physical machines. Our extensive evaluation with micro-benchmarks, I/O traces and real-world applications demonstrates the effectiveness of BASS, with significantly improved I/O performance and reduced storage network usage.