{"title":"变化中的极端变化*","authors":"Yuya Sasaki, Yulong Wang","doi":"10.1080/07350015.2023.2249509","DOIUrl":null,"url":null,"abstract":"Policy analysts are often interested in treating the units with extreme outcomes, such as infants with extremely low birth weights. Existing changes-in-changes (CIC) estimators are tailored to middle quantiles and do not work well for such subpopulations. This paper proposes a new CIC estimator to accurately estimate treatment effects at extreme quantiles. With its asymptotic normality, we also propose a method of statistical inference, which is simple to implement. Based on simulation studies, we propose to use our extreme CIC estimator for extreme, such as below 5% and above 95%, quantiles, while the conventional CIC estimator should be used for intermediate quantiles. Applying the proposed method, we study the effects of income gains from the 1993 EITC reform on infant birth weights for those in the most critical conditions. This paper is accompanied by a Stata command.","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"229 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extreme Changes in Changes*\",\"authors\":\"Yuya Sasaki, Yulong Wang\",\"doi\":\"10.1080/07350015.2023.2249509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Policy analysts are often interested in treating the units with extreme outcomes, such as infants with extremely low birth weights. Existing changes-in-changes (CIC) estimators are tailored to middle quantiles and do not work well for such subpopulations. This paper proposes a new CIC estimator to accurately estimate treatment effects at extreme quantiles. With its asymptotic normality, we also propose a method of statistical inference, which is simple to implement. Based on simulation studies, we propose to use our extreme CIC estimator for extreme, such as below 5% and above 95%, quantiles, while the conventional CIC estimator should be used for intermediate quantiles. Applying the proposed method, we study the effects of income gains from the 1993 EITC reform on infant birth weights for those in the most critical conditions. This paper is accompanied by a Stata command.\",\"PeriodicalId\":118766,\"journal\":{\"name\":\"Journal of Business & Economic Statistics\",\"volume\":\"229 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business & Economic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2023.2249509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07350015.2023.2249509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Policy analysts are often interested in treating the units with extreme outcomes, such as infants with extremely low birth weights. Existing changes-in-changes (CIC) estimators are tailored to middle quantiles and do not work well for such subpopulations. This paper proposes a new CIC estimator to accurately estimate treatment effects at extreme quantiles. With its asymptotic normality, we also propose a method of statistical inference, which is simple to implement. Based on simulation studies, we propose to use our extreme CIC estimator for extreme, such as below 5% and above 95%, quantiles, while the conventional CIC estimator should be used for intermediate quantiles. Applying the proposed method, we study the effects of income gains from the 1993 EITC reform on infant birth weights for those in the most critical conditions. This paper is accompanied by a Stata command.