基于形态学信息的蒙汉SMT最大熵重排序模型

Zhenxin Yang, Miao Li, Zede Zhu, Lei Chen, Linyu Wei, Shaoqi Wang
{"title":"基于形态学信息的蒙汉SMT最大熵重排序模型","authors":"Zhenxin Yang, Miao Li, Zede Zhu, Lei Chen, Linyu Wei, Shaoqi Wang","doi":"10.1109/IALP.2014.6973484","DOIUrl":null,"url":null,"abstract":"Different order between Mongolian and Chinese and the scarcity of parallel corpus are the main problems in Mongolian-Chinese statistical machine translation (SMT). We propose a method that adopts morphological information as the features of the maximum entropy based phrase reordering model for Mongolian-Chinese SMT. By taking advantage of the Mongolian morphological information, we add Mongolian stem and affix as phrase boundary information and use a maximum entropy model to predict reordering of neighbor blocks. To some extent, our method can alleviate the influence of reordering caused by the data sparseness. In addition, we further add part-of-speech (POS) as the features in the reordering model. Experiments show that the approach outperforms the maximum entropy model using only boundary words information and provides a maximum improvement of 0.8 BLEU score increment over baseline.","PeriodicalId":117334,"journal":{"name":"2014 International Conference on Asian Language Processing (IALP)","volume":"38 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A maximum entropy based reordering model for Mongolian-Chinese SMT with morphological information\",\"authors\":\"Zhenxin Yang, Miao Li, Zede Zhu, Lei Chen, Linyu Wei, Shaoqi Wang\",\"doi\":\"10.1109/IALP.2014.6973484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different order between Mongolian and Chinese and the scarcity of parallel corpus are the main problems in Mongolian-Chinese statistical machine translation (SMT). We propose a method that adopts morphological information as the features of the maximum entropy based phrase reordering model for Mongolian-Chinese SMT. By taking advantage of the Mongolian morphological information, we add Mongolian stem and affix as phrase boundary information and use a maximum entropy model to predict reordering of neighbor blocks. To some extent, our method can alleviate the influence of reordering caused by the data sparseness. In addition, we further add part-of-speech (POS) as the features in the reordering model. Experiments show that the approach outperforms the maximum entropy model using only boundary words information and provides a maximum improvement of 0.8 BLEU score increment over baseline.\",\"PeriodicalId\":117334,\"journal\":{\"name\":\"2014 International Conference on Asian Language Processing (IALP)\",\"volume\":\"38 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2014.6973484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2014.6973484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

蒙汉统计机器翻译中存在的主要问题是蒙汉语料库的缺乏和语序的差异。提出了一种以形态信息为特征的基于最大熵的蒙汉SMT短语重排模型。利用蒙古语的形态信息,加入蒙古语词干和词缀作为短语边界信息,利用最大熵模型预测相邻块的重排序。在一定程度上,我们的方法可以缓解由于数据稀疏性导致的重排序的影响。此外,我们进一步增加词性(POS)作为重排序模型的特征。实验表明,该方法优于仅使用边界词信息的最大熵模型,并且在基线上提供了0.8个BLEU分数增量的最大改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A maximum entropy based reordering model for Mongolian-Chinese SMT with morphological information
Different order between Mongolian and Chinese and the scarcity of parallel corpus are the main problems in Mongolian-Chinese statistical machine translation (SMT). We propose a method that adopts morphological information as the features of the maximum entropy based phrase reordering model for Mongolian-Chinese SMT. By taking advantage of the Mongolian morphological information, we add Mongolian stem and affix as phrase boundary information and use a maximum entropy model to predict reordering of neighbor blocks. To some extent, our method can alleviate the influence of reordering caused by the data sparseness. In addition, we further add part-of-speech (POS) as the features in the reordering model. Experiments show that the approach outperforms the maximum entropy model using only boundary words information and provides a maximum improvement of 0.8 BLEU score increment over baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信