关于离群点检测和一类分类方法的评价

Lorne Swersky, Henrique O. Marques, J. Sander, R. Campello, A. Zimek
{"title":"关于离群点检测和一类分类方法的评价","authors":"Lorne Swersky, Henrique O. Marques, J. Sander, R. Campello, A. Zimek","doi":"10.1109/DSAA.2016.8","DOIUrl":null,"url":null,"abstract":"It has been shown that unsupervised outlier detection methods can be adapted to the one-class classification problem. In this paper, we focus on the comparison of oneclass classification algorithms with such adapted unsupervised outlier detection methods, improving on previous comparison studies in several important aspects. We study a number of one-class classification and unsupervised outlier detection methods in a rigorous experimental setup, comparing them on a large number of datasets with different characteristics, using different performance measures. Our experiments led to conclusions that do not fully agree with those of previous work.","PeriodicalId":193885,"journal":{"name":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","volume":"02 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"On the Evaluation of Outlier Detection and One-Class Classification Methods\",\"authors\":\"Lorne Swersky, Henrique O. Marques, J. Sander, R. Campello, A. Zimek\",\"doi\":\"10.1109/DSAA.2016.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been shown that unsupervised outlier detection methods can be adapted to the one-class classification problem. In this paper, we focus on the comparison of oneclass classification algorithms with such adapted unsupervised outlier detection methods, improving on previous comparison studies in several important aspects. We study a number of one-class classification and unsupervised outlier detection methods in a rigorous experimental setup, comparing them on a large number of datasets with different characteristics, using different performance measures. Our experiments led to conclusions that do not fully agree with those of previous work.\",\"PeriodicalId\":193885,\"journal\":{\"name\":\"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)\",\"volume\":\"02 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSAA.2016.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2016.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

研究表明,无监督离群点检测方法可以适用于单类分类问题。在本文中,我们将重点放在单类分类算法与这种自适应无监督离群点检测方法的比较上,在几个重要方面改进了之前的比较研究。我们在严格的实验设置中研究了许多单类分类和无监督异常值检测方法,并在具有不同特征的大量数据集上使用不同的性能度量对它们进行了比较。我们的实验得出的结论与以前的工作并不完全一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Evaluation of Outlier Detection and One-Class Classification Methods
It has been shown that unsupervised outlier detection methods can be adapted to the one-class classification problem. In this paper, we focus on the comparison of oneclass classification algorithms with such adapted unsupervised outlier detection methods, improving on previous comparison studies in several important aspects. We study a number of one-class classification and unsupervised outlier detection methods in a rigorous experimental setup, comparing them on a large number of datasets with different characteristics, using different performance measures. Our experiments led to conclusions that do not fully agree with those of previous work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信