Chenyang Li, Xu Chen, Ya Zhang, Siheng Chen, Dan Lv, Yanfeng Wang
{"title":"知识图上对象-标签链接预测的双图嵌入","authors":"Chenyang Li, Xu Chen, Ya Zhang, Siheng Chen, Dan Lv, Yanfeng Wang","doi":"10.1109/ICBK50248.2020.00048","DOIUrl":null,"url":null,"abstract":"Knowledge graphs (KGs) composed of users, objects, and tags are widely used in web applications ranging from E-commerce, social media sites to news portals. This paper concentrates on an attractive application which aims to predict the object-tag links in the KG for better tag recommendation and object explanation. When predicting the object-tag links, both the first-order and high-order proximities between entities in the KG propagate essential similarity information for better prediction. Most existing methods focus on preserving the first-order proximity between entities in the KG. However, they cannot capture the high-order proximities in an explicit way, and the adopted margin-based criterion cannot measure the first-order proximity on the global structure accurately. In this paper, we propose a novel approach named Dual Graph Embedding (DGE) that models both the first-order and high-order proximities in the KG via an auto-encoding architecture to facilitate better object-tag relation inference. Here the dual graphs contain an object graph and a tag graph that explicitly depict the high-order object-object and tag-tag proximities in the KG. The dual graph encoder in DGE then encodes these high-order proximities in the dual graphs into entity embeddings. The decoder formulates a skipgram objective that maximizes the first-order proximity between observed object-tag pairs over the global proximity structure. With the supervision of the decoder, the embeddings derived by the encoder will be refined to capture both the first-order and high-order proximities in the KG for better link prediction. Extensive experiments on three real-world datasets demonstrate that DGE outperforms the state-of-the-art methods.","PeriodicalId":432857,"journal":{"name":"2020 IEEE International Conference on Knowledge Graph (ICKG)","volume":"61 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dual Graph Embedding for Object-Tag Link Prediction on the Knowledge Graph\",\"authors\":\"Chenyang Li, Xu Chen, Ya Zhang, Siheng Chen, Dan Lv, Yanfeng Wang\",\"doi\":\"10.1109/ICBK50248.2020.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge graphs (KGs) composed of users, objects, and tags are widely used in web applications ranging from E-commerce, social media sites to news portals. This paper concentrates on an attractive application which aims to predict the object-tag links in the KG for better tag recommendation and object explanation. When predicting the object-tag links, both the first-order and high-order proximities between entities in the KG propagate essential similarity information for better prediction. Most existing methods focus on preserving the first-order proximity between entities in the KG. However, they cannot capture the high-order proximities in an explicit way, and the adopted margin-based criterion cannot measure the first-order proximity on the global structure accurately. In this paper, we propose a novel approach named Dual Graph Embedding (DGE) that models both the first-order and high-order proximities in the KG via an auto-encoding architecture to facilitate better object-tag relation inference. Here the dual graphs contain an object graph and a tag graph that explicitly depict the high-order object-object and tag-tag proximities in the KG. The dual graph encoder in DGE then encodes these high-order proximities in the dual graphs into entity embeddings. The decoder formulates a skipgram objective that maximizes the first-order proximity between observed object-tag pairs over the global proximity structure. With the supervision of the decoder, the embeddings derived by the encoder will be refined to capture both the first-order and high-order proximities in the KG for better link prediction. Extensive experiments on three real-world datasets demonstrate that DGE outperforms the state-of-the-art methods.\",\"PeriodicalId\":432857,\"journal\":{\"name\":\"2020 IEEE International Conference on Knowledge Graph (ICKG)\",\"volume\":\"61 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Knowledge Graph (ICKG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK50248.2020.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Knowledge Graph (ICKG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK50248.2020.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dual Graph Embedding for Object-Tag Link Prediction on the Knowledge Graph
Knowledge graphs (KGs) composed of users, objects, and tags are widely used in web applications ranging from E-commerce, social media sites to news portals. This paper concentrates on an attractive application which aims to predict the object-tag links in the KG for better tag recommendation and object explanation. When predicting the object-tag links, both the first-order and high-order proximities between entities in the KG propagate essential similarity information for better prediction. Most existing methods focus on preserving the first-order proximity between entities in the KG. However, they cannot capture the high-order proximities in an explicit way, and the adopted margin-based criterion cannot measure the first-order proximity on the global structure accurately. In this paper, we propose a novel approach named Dual Graph Embedding (DGE) that models both the first-order and high-order proximities in the KG via an auto-encoding architecture to facilitate better object-tag relation inference. Here the dual graphs contain an object graph and a tag graph that explicitly depict the high-order object-object and tag-tag proximities in the KG. The dual graph encoder in DGE then encodes these high-order proximities in the dual graphs into entity embeddings. The decoder formulates a skipgram objective that maximizes the first-order proximity between observed object-tag pairs over the global proximity structure. With the supervision of the decoder, the embeddings derived by the encoder will be refined to capture both the first-order and high-order proximities in the KG for better link prediction. Extensive experiments on three real-world datasets demonstrate that DGE outperforms the state-of-the-art methods.