赛德尔等能图

H. Ramane, Mahadevappa M. Gundloor, S. Hosamani
{"title":"赛德尔等能图","authors":"H. Ramane, Mahadevappa M. Gundloor, S. Hosamani","doi":"10.18052/WWW.SCIPRESS.COM/BMSA.16.62","DOIUrl":null,"url":null,"abstract":"The Seidel matrix S(G) of a graph G is the square matrix with diagonal entries zeroes and off diagonal entries are - 1 or 1 corresponding to the adjacency and non-adjacency. The Seidel energy SE (G) of G is defined as the sum of the absolute values of the eigenvalues of S(G). Two graphs G1 and G2 are said to be Seidel equienergetic if SE (G1) = SE (G2). We establish an expression for the characteristic polynomial of the Seidel matrix and for the Seidel energy of the join of regular graphs. Thereby construct Seidel non cospectral, Seidel equienergetic graphs on n vertices, for all n ≥ 12.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Seidel Equienergetic Graphs\",\"authors\":\"H. Ramane, Mahadevappa M. Gundloor, S. Hosamani\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/BMSA.16.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Seidel matrix S(G) of a graph G is the square matrix with diagonal entries zeroes and off diagonal entries are - 1 or 1 corresponding to the adjacency and non-adjacency. The Seidel energy SE (G) of G is defined as the sum of the absolute values of the eigenvalues of S(G). Two graphs G1 and G2 are said to be Seidel equienergetic if SE (G1) = SE (G2). We establish an expression for the characteristic polynomial of the Seidel matrix and for the Seidel energy of the join of regular graphs. Thereby construct Seidel non cospectral, Seidel equienergetic graphs on n vertices, for all n ≥ 12.\",\"PeriodicalId\":252632,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences and Applications\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.16.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.16.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

图G的Seidel矩阵S(G)是对应邻接和非邻接的对角线项为0,非对角线项为- 1或1的方阵。G的赛德尔能量SE (G)定义为S(G)的特征值的绝对值之和。如果SE (G1) = SE (G2),则称两个图G1和G2是Seidel等能图。建立了正则图连接的赛德尔矩阵的特征多项式和赛德尔能量的表达式。从而构造n个顶点上的Seidel非共谱、Seidel等能图,对于所有n≥12。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seidel Equienergetic Graphs
The Seidel matrix S(G) of a graph G is the square matrix with diagonal entries zeroes and off diagonal entries are - 1 or 1 corresponding to the adjacency and non-adjacency. The Seidel energy SE (G) of G is defined as the sum of the absolute values of the eigenvalues of S(G). Two graphs G1 and G2 are said to be Seidel equienergetic if SE (G1) = SE (G2). We establish an expression for the characteristic polynomial of the Seidel matrix and for the Seidel energy of the join of regular graphs. Thereby construct Seidel non cospectral, Seidel equienergetic graphs on n vertices, for all n ≥ 12.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信