{"title":"赛德尔等能图","authors":"H. Ramane, Mahadevappa M. Gundloor, S. Hosamani","doi":"10.18052/WWW.SCIPRESS.COM/BMSA.16.62","DOIUrl":null,"url":null,"abstract":"The Seidel matrix S(G) of a graph G is the square matrix with diagonal entries zeroes and off diagonal entries are - 1 or 1 corresponding to the adjacency and non-adjacency. The Seidel energy SE (G) of G is defined as the sum of the absolute values of the eigenvalues of S(G). Two graphs G1 and G2 are said to be Seidel equienergetic if SE (G1) = SE (G2). We establish an expression for the characteristic polynomial of the Seidel matrix and for the Seidel energy of the join of regular graphs. Thereby construct Seidel non cospectral, Seidel equienergetic graphs on n vertices, for all n ≥ 12.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Seidel Equienergetic Graphs\",\"authors\":\"H. Ramane, Mahadevappa M. Gundloor, S. Hosamani\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/BMSA.16.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Seidel matrix S(G) of a graph G is the square matrix with diagonal entries zeroes and off diagonal entries are - 1 or 1 corresponding to the adjacency and non-adjacency. The Seidel energy SE (G) of G is defined as the sum of the absolute values of the eigenvalues of S(G). Two graphs G1 and G2 are said to be Seidel equienergetic if SE (G1) = SE (G2). We establish an expression for the characteristic polynomial of the Seidel matrix and for the Seidel energy of the join of regular graphs. Thereby construct Seidel non cospectral, Seidel equienergetic graphs on n vertices, for all n ≥ 12.\",\"PeriodicalId\":252632,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences and Applications\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.16.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.16.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
图G的Seidel矩阵S(G)是对应邻接和非邻接的对角线项为0,非对角线项为- 1或1的方阵。G的赛德尔能量SE (G)定义为S(G)的特征值的绝对值之和。如果SE (G1) = SE (G2),则称两个图G1和G2是Seidel等能图。建立了正则图连接的赛德尔矩阵的特征多项式和赛德尔能量的表达式。从而构造n个顶点上的Seidel非共谱、Seidel等能图,对于所有n≥12。
The Seidel matrix S(G) of a graph G is the square matrix with diagonal entries zeroes and off diagonal entries are - 1 or 1 corresponding to the adjacency and non-adjacency. The Seidel energy SE (G) of G is defined as the sum of the absolute values of the eigenvalues of S(G). Two graphs G1 and G2 are said to be Seidel equienergetic if SE (G1) = SE (G2). We establish an expression for the characteristic polynomial of the Seidel matrix and for the Seidel energy of the join of regular graphs. Thereby construct Seidel non cospectral, Seidel equienergetic graphs on n vertices, for all n ≥ 12.