学习一种基于特征融合和上下文学习的判别特征用于目标检测

You Lei, Hongpeng Wang, Y. Wang
{"title":"学习一种基于特征融合和上下文学习的判别特征用于目标检测","authors":"You Lei, Hongpeng Wang, Y. Wang","doi":"10.1109/SPAC.2017.8304337","DOIUrl":null,"url":null,"abstract":"Object detection is one of the most challenging tasks in the field of computer vision. It is widely used in traffic sign detection[1], pedestrian detection[2,3], person re-identification[4], object tracking[5,6,7] and so on[8,9]. Although convolutional neural network (CNN)-based algorithms have made great achievements in this field, object detection still suffers from illumination changes, occlusion, intraclass differences, etc.[10]. Candidate bounding box generation methods and feature extraction methods also influence the final detection result. In this paper, we propose a discriminative feature extraction method based on feature fusion and context learning.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning a discriminative feature for object detection based on feature fusing and context learning\",\"authors\":\"You Lei, Hongpeng Wang, Y. Wang\",\"doi\":\"10.1109/SPAC.2017.8304337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection is one of the most challenging tasks in the field of computer vision. It is widely used in traffic sign detection[1], pedestrian detection[2,3], person re-identification[4], object tracking[5,6,7] and so on[8,9]. Although convolutional neural network (CNN)-based algorithms have made great achievements in this field, object detection still suffers from illumination changes, occlusion, intraclass differences, etc.[10]. Candidate bounding box generation methods and feature extraction methods also influence the final detection result. In this paper, we propose a discriminative feature extraction method based on feature fusion and context learning.\",\"PeriodicalId\":161647,\"journal\":{\"name\":\"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2017.8304337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标检测是计算机视觉领域最具挑战性的任务之一。广泛应用于交通标志检测[1]、行人检测[2,3]、人再识别[4]、目标跟踪[5,6,7]等[8,9]。尽管基于卷积神经网络(convolutional neural network, CNN)的算法在这一领域取得了很大的成就,但物体检测仍然存在光照变化、遮挡、类内差异等问题[10]。候选边界框生成方法和特征提取方法也会影响最终的检测结果。本文提出了一种基于特征融合和上下文学习的判别特征提取方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning a discriminative feature for object detection based on feature fusing and context learning
Object detection is one of the most challenging tasks in the field of computer vision. It is widely used in traffic sign detection[1], pedestrian detection[2,3], person re-identification[4], object tracking[5,6,7] and so on[8,9]. Although convolutional neural network (CNN)-based algorithms have made great achievements in this field, object detection still suffers from illumination changes, occlusion, intraclass differences, etc.[10]. Candidate bounding box generation methods and feature extraction methods also influence the final detection result. In this paper, we propose a discriminative feature extraction method based on feature fusion and context learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信