{"title":"利用人工智能进行二进制代码理解","authors":"Yifan Zhang","doi":"10.1145/3551349.3559564","DOIUrl":null,"url":null,"abstract":"Understanding binary code is an essential but complex software engineering task for reverse engineering, malware analysis, and compiler optimization. Unlike source code, binary code has limited semantic information, which makes it challenging for human comprehension. At the same time, compiling source to binary code, or transpiling among different programming languages (PLs) can provide a way to introduce external knowledge into binary comprehension. We propose to develop Artificial Intelligence (AI) models that aid human comprehension of binary code. Specifically, we propose to incorporate domain knowledge from large corpora of source code (e.g., variable names, comments) to build AI models that capture a generalizable representation of binary code. Lastly, we will investigate metrics to assess the performance of models that apply to binary code by using human studies of comprehension.","PeriodicalId":197939,"journal":{"name":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","volume":"631 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Artificial Intelligence on Binary Code Comprehension\",\"authors\":\"Yifan Zhang\",\"doi\":\"10.1145/3551349.3559564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding binary code is an essential but complex software engineering task for reverse engineering, malware analysis, and compiler optimization. Unlike source code, binary code has limited semantic information, which makes it challenging for human comprehension. At the same time, compiling source to binary code, or transpiling among different programming languages (PLs) can provide a way to introduce external knowledge into binary comprehension. We propose to develop Artificial Intelligence (AI) models that aid human comprehension of binary code. Specifically, we propose to incorporate domain knowledge from large corpora of source code (e.g., variable names, comments) to build AI models that capture a generalizable representation of binary code. Lastly, we will investigate metrics to assess the performance of models that apply to binary code by using human studies of comprehension.\",\"PeriodicalId\":197939,\"journal\":{\"name\":\"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering\",\"volume\":\"631 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3551349.3559564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3551349.3559564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Leveraging Artificial Intelligence on Binary Code Comprehension
Understanding binary code is an essential but complex software engineering task for reverse engineering, malware analysis, and compiler optimization. Unlike source code, binary code has limited semantic information, which makes it challenging for human comprehension. At the same time, compiling source to binary code, or transpiling among different programming languages (PLs) can provide a way to introduce external knowledge into binary comprehension. We propose to develop Artificial Intelligence (AI) models that aid human comprehension of binary code. Specifically, we propose to incorporate domain knowledge from large corpora of source code (e.g., variable names, comments) to build AI models that capture a generalizable representation of binary code. Lastly, we will investigate metrics to assess the performance of models that apply to binary code by using human studies of comprehension.