统一的端到端句子去噪

Zhantong Liang, A. Youssef
{"title":"统一的端到端句子去噪","authors":"Zhantong Liang, A. Youssef","doi":"10.1109/CSCI51800.2020.00087","DOIUrl":null,"url":null,"abstract":"It takes more than correct grammar to speak good English. In this paper, we describe the sentence denoising task that reduces the vagueness, redundancy, and irrationality of a grammatical sentence. We define a rich, linguistics-inspired noise taxonomy and establish the formal definition of the problem. A unified end-to-end model based on Transformer is proposed and an efficient algorithm for constructing the training data is given, together with a separate fine-tuning step to get the ideal model. Our method outperforms previous results and keeps good accuracy as the noise composition gets more complicated.","PeriodicalId":336929,"journal":{"name":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified End-to-End Sentence Denoising\",\"authors\":\"Zhantong Liang, A. Youssef\",\"doi\":\"10.1109/CSCI51800.2020.00087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It takes more than correct grammar to speak good English. In this paper, we describe the sentence denoising task that reduces the vagueness, redundancy, and irrationality of a grammatical sentence. We define a rich, linguistics-inspired noise taxonomy and establish the formal definition of the problem. A unified end-to-end model based on Transformer is proposed and an efficient algorithm for constructing the training data is given, together with a separate fine-tuning step to get the ideal model. Our method outperforms previous results and keeps good accuracy as the noise composition gets more complicated.\",\"PeriodicalId\":336929,\"journal\":{\"name\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI51800.2020.00087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI51800.2020.00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

说一口流利的英语需要的不仅仅是正确的语法。在本文中,我们描述了句子去噪任务,以减少语法句子的模糊,冗余和不合理。我们定义了一个丰富的,受语言学启发的噪声分类,并建立了问题的正式定义。提出了一种基于Transformer的统一的端到端模型,给出了一种高效的训练数据构造算法,并给出了一个单独的微调步骤,以获得理想的模型。该方法在噪声组成复杂的情况下仍能保持较好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unified End-to-End Sentence Denoising
It takes more than correct grammar to speak good English. In this paper, we describe the sentence denoising task that reduces the vagueness, redundancy, and irrationality of a grammatical sentence. We define a rich, linguistics-inspired noise taxonomy and establish the formal definition of the problem. A unified end-to-end model based on Transformer is proposed and an efficient algorithm for constructing the training data is given, together with a separate fine-tuning step to get the ideal model. Our method outperforms previous results and keeps good accuracy as the noise composition gets more complicated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信