假手肌电控制的递归神经网络模型

Teodor-Adrian Teban, R. Precup, Elena-Cristina Lunca, A. Albu, Claudia-Adina Bojan-Dragos, E. Petriu
{"title":"假手肌电控制的递归神经网络模型","authors":"Teodor-Adrian Teban, R. Precup, Elena-Cristina Lunca, A. Albu, Claudia-Adina Bojan-Dragos, E. Petriu","doi":"10.1109/ICSTCC.2018.8540720","DOIUrl":null,"url":null,"abstract":"This paper proposes a set of recurrent neural networks (RNNs) capable of replicating the non-linear mechanism of a prosthetic hand based on surface myoelectric sensors. The experimental results of the RNN show a good result of the system for the training data and an acceptable result on the validation data. A comparison between the developed RNNs and a similar size non-recurrent neural network is included.","PeriodicalId":308427,"journal":{"name":"2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Recurrent Neural Network Models for Myoelectricbased Control of a Prosthetic Hand\",\"authors\":\"Teodor-Adrian Teban, R. Precup, Elena-Cristina Lunca, A. Albu, Claudia-Adina Bojan-Dragos, E. Petriu\",\"doi\":\"10.1109/ICSTCC.2018.8540720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a set of recurrent neural networks (RNNs) capable of replicating the non-linear mechanism of a prosthetic hand based on surface myoelectric sensors. The experimental results of the RNN show a good result of the system for the training data and an acceptable result on the validation data. A comparison between the developed RNNs and a similar size non-recurrent neural network is included.\",\"PeriodicalId\":308427,\"journal\":{\"name\":\"2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTCC.2018.8540720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC.2018.8540720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一套基于表面肌电传感器的递归神经网络(RNNs),能够复制假手的非线性机制。实验结果表明,该系统对训练数据有较好的处理效果,对验证数据有较好的处理效果。将已开发的rnn与类似大小的非循环神经网络进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recurrent Neural Network Models for Myoelectricbased Control of a Prosthetic Hand
This paper proposes a set of recurrent neural networks (RNNs) capable of replicating the non-linear mechanism of a prosthetic hand based on surface myoelectric sensors. The experimental results of the RNN show a good result of the system for the training data and an acceptable result on the validation data. A comparison between the developed RNNs and a similar size non-recurrent neural network is included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信