Bochner可积函数空间中的逐点最佳共逼近

Eyad Abu-Sirhan
{"title":"Bochner可积函数空间中的逐点最佳共逼近","authors":"Eyad Abu-Sirhan","doi":"10.33993/jnaat492-1206","DOIUrl":null,"url":null,"abstract":"Let \\(X\\) be a Banach space, \\(G$\\) be a closed subset of \\(X\\), and \\((\\Omega,\\Sigma,\\mu )\\) be a \\(\\sigma\\)-finite measure space. In this paper we present some results on coproximinality (pointwise coproximinality) of \\(L^{p}(\\mu,G)\\), \\(1\\leq p\\leq \\infty\\), in \\(L^{p}(\\mu,X\\).","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pointwise best coapproximation in the space of Bochner integrable functions\",\"authors\":\"Eyad Abu-Sirhan\",\"doi\":\"10.33993/jnaat492-1206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\(X\\\\) be a Banach space, \\\\(G$\\\\) be a closed subset of \\\\(X\\\\), and \\\\((\\\\Omega,\\\\Sigma,\\\\mu )\\\\) be a \\\\(\\\\sigma\\\\)-finite measure space. In this paper we present some results on coproximinality (pointwise coproximinality) of \\\\(L^{p}(\\\\mu,G)\\\\), \\\\(1\\\\leq p\\\\leq \\\\infty\\\\), in \\\\(L^{p}(\\\\mu,X\\\\).\",\"PeriodicalId\":287022,\"journal\":{\"name\":\"Journal of Numerical Analysis and Approximation Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Analysis and Approximation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33993/jnaat492-1206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat492-1206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设\(X\)是一个Banach空间,\(G$\)是\(X\)的一个封闭子集,\((\Omega,\Sigma,\mu )\)是一个\(\sigma\) -有限测度空间。本文给出了\(L^{p}(\mu,X\)中\(L^{p}(\mu,G)\), \(1\leq p\leq \infty\),的共近性(点共近性)的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pointwise best coapproximation in the space of Bochner integrable functions
Let \(X\) be a Banach space, \(G$\) be a closed subset of \(X\), and \((\Omega,\Sigma,\mu )\) be a \(\sigma\)-finite measure space. In this paper we present some results on coproximinality (pointwise coproximinality) of \(L^{p}(\mu,G)\), \(1\leq p\leq \infty\), in \(L^{p}(\mu,X\).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信