{"title":"Bochner可积函数空间中的逐点最佳共逼近","authors":"Eyad Abu-Sirhan","doi":"10.33993/jnaat492-1206","DOIUrl":null,"url":null,"abstract":"Let \\(X\\) be a Banach space, \\(G$\\) be a closed subset of \\(X\\), and \\((\\Omega,\\Sigma,\\mu )\\) be a \\(\\sigma\\)-finite measure space. In this paper we present some results on coproximinality (pointwise coproximinality) of \\(L^{p}(\\mu,G)\\), \\(1\\leq p\\leq \\infty\\), in \\(L^{p}(\\mu,X\\).","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pointwise best coapproximation in the space of Bochner integrable functions\",\"authors\":\"Eyad Abu-Sirhan\",\"doi\":\"10.33993/jnaat492-1206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\(X\\\\) be a Banach space, \\\\(G$\\\\) be a closed subset of \\\\(X\\\\), and \\\\((\\\\Omega,\\\\Sigma,\\\\mu )\\\\) be a \\\\(\\\\sigma\\\\)-finite measure space. In this paper we present some results on coproximinality (pointwise coproximinality) of \\\\(L^{p}(\\\\mu,G)\\\\), \\\\(1\\\\leq p\\\\leq \\\\infty\\\\), in \\\\(L^{p}(\\\\mu,X\\\\).\",\"PeriodicalId\":287022,\"journal\":{\"name\":\"Journal of Numerical Analysis and Approximation Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Analysis and Approximation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33993/jnaat492-1206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat492-1206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pointwise best coapproximation in the space of Bochner integrable functions
Let \(X\) be a Banach space, \(G$\) be a closed subset of \(X\), and \((\Omega,\Sigma,\mu )\) be a \(\sigma\)-finite measure space. In this paper we present some results on coproximinality (pointwise coproximinality) of \(L^{p}(\mu,G)\), \(1\leq p\leq \infty\), in \(L^{p}(\mu,X\).