天体生物学(概述)

S. McMahon
{"title":"天体生物学(概述)","authors":"S. McMahon","doi":"10.1093/acrefore/9780190647926.013.1","DOIUrl":null,"url":null,"abstract":"Astrobiology seeks to understand the origin, evolution, distribution, and future of life in the universe and thus to integrate biology with planetary science, astronomy, cosmology, and the other physical sciences. The discipline emerged in the late 20th century, partly in response to the development of space exploration programs in the United States, Russia, and elsewhere. Many astrobiologists are now involved in the search for life on Mars, Europa, Enceladus, and beyond. However, research in astrobiology does not presume the existence of extraterrestrial life, for which there is no compelling evidence; indeed, it includes the study of life on Earth in its astronomical and cosmic context. Moreover, the absence of observed life from all other planetary bodies requires a scientific explanation, and suggests several hypotheses amenable to further observational, theoretical, and experimental investigation under the aegis of astrobiology. Despite the apparent uniqueness of Earth’s biosphere— the “n = 1 problem”—astrobiology is increasingly driven by large quantities of data. Such data have been provided by the robotic exploration of the Solar System, the first observations of extrasolar planets, laboratory experiments into prebiotic chemistry, spectroscopic measurements of organic molecules in extraterrestrial environments, analytical advances in the biogeochemistry and paleobiology of very ancient rocks, surveys of Earth’s microbial diversity and ecology, and experiments to delimit the capacity of organisms to survive and thrive in extreme conditions.","PeriodicalId":304611,"journal":{"name":"Oxford Research Encyclopedia of Planetary Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astrobiology (Overview)\",\"authors\":\"S. McMahon\",\"doi\":\"10.1093/acrefore/9780190647926.013.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Astrobiology seeks to understand the origin, evolution, distribution, and future of life in the universe and thus to integrate biology with planetary science, astronomy, cosmology, and the other physical sciences. The discipline emerged in the late 20th century, partly in response to the development of space exploration programs in the United States, Russia, and elsewhere. Many astrobiologists are now involved in the search for life on Mars, Europa, Enceladus, and beyond. However, research in astrobiology does not presume the existence of extraterrestrial life, for which there is no compelling evidence; indeed, it includes the study of life on Earth in its astronomical and cosmic context. Moreover, the absence of observed life from all other planetary bodies requires a scientific explanation, and suggests several hypotheses amenable to further observational, theoretical, and experimental investigation under the aegis of astrobiology. Despite the apparent uniqueness of Earth’s biosphere— the “n = 1 problem”—astrobiology is increasingly driven by large quantities of data. Such data have been provided by the robotic exploration of the Solar System, the first observations of extrasolar planets, laboratory experiments into prebiotic chemistry, spectroscopic measurements of organic molecules in extraterrestrial environments, analytical advances in the biogeochemistry and paleobiology of very ancient rocks, surveys of Earth’s microbial diversity and ecology, and experiments to delimit the capacity of organisms to survive and thrive in extreme conditions.\",\"PeriodicalId\":304611,\"journal\":{\"name\":\"Oxford Research Encyclopedia of Planetary Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxford Research Encyclopedia of Planetary Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/acrefore/9780190647926.013.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford Research Encyclopedia of Planetary Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/acrefore/9780190647926.013.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

天体生物学旨在了解宇宙中生命的起源、演化、分布和未来,从而将生物学与行星科学、天文学、宇宙学和其他物理科学相结合。这门学科兴起于20世纪后期,部分是为了响应美国、俄罗斯和其他地方太空探索计划的发展。许多天体生物学家现在都在火星、木卫二、土卫二等地寻找生命。然而,天体生物学的研究并没有假定地外生命的存在,因为没有令人信服的证据;事实上,它包括在天文学和宇宙背景下对地球上生命的研究。此外,在所有其他行星上都没有观察到生命,这需要一个科学的解释,并提出了几个假设,这些假设可以在天体生物学的支持下进行进一步的观测、理论和实验研究。尽管地球生物圈具有明显的独特性——“n = 1问题”——但天体生物学正日益受到大量数据的推动。这些数据是由机器人对太阳系的探索、对太阳系外行星的首次观测、对生命前化学的实验室实验、对地外环境中有机分子的光谱测量、对非常古老的岩石的生物地球化学和古生物学的分析进展、对地球微生物多样性和生态学的调查、以及界定生物在极端条件下生存和繁衍能力的实验提供的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Astrobiology (Overview)
Astrobiology seeks to understand the origin, evolution, distribution, and future of life in the universe and thus to integrate biology with planetary science, astronomy, cosmology, and the other physical sciences. The discipline emerged in the late 20th century, partly in response to the development of space exploration programs in the United States, Russia, and elsewhere. Many astrobiologists are now involved in the search for life on Mars, Europa, Enceladus, and beyond. However, research in astrobiology does not presume the existence of extraterrestrial life, for which there is no compelling evidence; indeed, it includes the study of life on Earth in its astronomical and cosmic context. Moreover, the absence of observed life from all other planetary bodies requires a scientific explanation, and suggests several hypotheses amenable to further observational, theoretical, and experimental investigation under the aegis of astrobiology. Despite the apparent uniqueness of Earth’s biosphere— the “n = 1 problem”—astrobiology is increasingly driven by large quantities of data. Such data have been provided by the robotic exploration of the Solar System, the first observations of extrasolar planets, laboratory experiments into prebiotic chemistry, spectroscopic measurements of organic molecules in extraterrestrial environments, analytical advances in the biogeochemistry and paleobiology of very ancient rocks, surveys of Earth’s microbial diversity and ecology, and experiments to delimit the capacity of organisms to survive and thrive in extreme conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信