{"title":"一种仿生摩擦估计方法","authors":"R. M. Herrera","doi":"10.1109/MICAI.2007.39","DOIUrl":null,"url":null,"abstract":"Few years old children lift and manipulate unfamiliar objects more dexterously than todaypsilas robots. Therefore, it has arisen an interest at the artificial intelligence community to look for inspiration on neurophysiological studies to design better models for the robots. The estimation of the friction coefficient of the objectpsilas material is a crucial information in a human dexterous manipulation. Humans estimate the friction coefficient based on the responses of their tactile mechanoreceptors. In this paper, we propose a method to estimate the friction coefficient using artificial neural networks that receive as input simulated human afferent responses. This method is strongly inspired on neurophysiological studies of the afferent responses during the human dexterous manipulation of objects. Finite element analysis was used to model a finger and an object, and simulated experiments using the proposed method were done. To the best of our knowledge, this is the first time that simulated human afferent signals are combined with finite element analysis and artificial neural networks, to estimate the friction coefficient.","PeriodicalId":296192,"journal":{"name":"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Bio-inspired Method for Friction Estimation\",\"authors\":\"R. M. Herrera\",\"doi\":\"10.1109/MICAI.2007.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Few years old children lift and manipulate unfamiliar objects more dexterously than todaypsilas robots. Therefore, it has arisen an interest at the artificial intelligence community to look for inspiration on neurophysiological studies to design better models for the robots. The estimation of the friction coefficient of the objectpsilas material is a crucial information in a human dexterous manipulation. Humans estimate the friction coefficient based on the responses of their tactile mechanoreceptors. In this paper, we propose a method to estimate the friction coefficient using artificial neural networks that receive as input simulated human afferent responses. This method is strongly inspired on neurophysiological studies of the afferent responses during the human dexterous manipulation of objects. Finite element analysis was used to model a finger and an object, and simulated experiments using the proposed method were done. To the best of our knowledge, this is the first time that simulated human afferent signals are combined with finite element analysis and artificial neural networks, to estimate the friction coefficient.\",\"PeriodicalId\":296192,\"journal\":{\"name\":\"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICAI.2007.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2007.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Few years old children lift and manipulate unfamiliar objects more dexterously than todaypsilas robots. Therefore, it has arisen an interest at the artificial intelligence community to look for inspiration on neurophysiological studies to design better models for the robots. The estimation of the friction coefficient of the objectpsilas material is a crucial information in a human dexterous manipulation. Humans estimate the friction coefficient based on the responses of their tactile mechanoreceptors. In this paper, we propose a method to estimate the friction coefficient using artificial neural networks that receive as input simulated human afferent responses. This method is strongly inspired on neurophysiological studies of the afferent responses during the human dexterous manipulation of objects. Finite element analysis was used to model a finger and an object, and simulated experiments using the proposed method were done. To the best of our knowledge, this is the first time that simulated human afferent signals are combined with finite element analysis and artificial neural networks, to estimate the friction coefficient.