基于递归神经网络的面部特征情感识别

Amr Mostafa, M. Khalil, Hazem M. Abbas
{"title":"基于递归神经网络的面部特征情感识别","authors":"Amr Mostafa, M. Khalil, Hazem M. Abbas","doi":"10.1109/ICCES.2018.8639182","DOIUrl":null,"url":null,"abstract":"This paper presents emotion recognition models using facial expression features. By detecting the face in videos and extracting local characteristics (landmarks) to generate the geometric-based features to discriminate between a set of five emotion expressions (amusement, anger, disgust, fear, and sadness) for videos from BioVid Emo database. The classification operation is done using different machine learning models including random forest (RF), support vector machines (SVM), k-nearest neighbors (KNN) and recurrent neural network (RNN), then the evaluation operation is done to generate different discrimination rates that reached up to 82% to discriminate between anger and disgust emotions.","PeriodicalId":113848,"journal":{"name":"2018 13th International Conference on Computer Engineering and Systems (ICCES)","volume":"92 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Emotion Recognition by Facial Features using Recurrent Neural Networks\",\"authors\":\"Amr Mostafa, M. Khalil, Hazem M. Abbas\",\"doi\":\"10.1109/ICCES.2018.8639182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents emotion recognition models using facial expression features. By detecting the face in videos and extracting local characteristics (landmarks) to generate the geometric-based features to discriminate between a set of five emotion expressions (amusement, anger, disgust, fear, and sadness) for videos from BioVid Emo database. The classification operation is done using different machine learning models including random forest (RF), support vector machines (SVM), k-nearest neighbors (KNN) and recurrent neural network (RNN), then the evaluation operation is done to generate different discrimination rates that reached up to 82% to discriminate between anger and disgust emotions.\",\"PeriodicalId\":113848,\"journal\":{\"name\":\"2018 13th International Conference on Computer Engineering and Systems (ICCES)\",\"volume\":\"92 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 13th International Conference on Computer Engineering and Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES.2018.8639182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2018.8639182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了基于面部表情特征的情绪识别模型。通过检测视频中的人脸并提取局部特征(地标)来生成基于几何的特征,以区分来自BioVid Emo数据库的视频的五种情绪表达(娱乐,愤怒,厌恶,恐惧和悲伤)。使用随机森林(RF)、支持向量机(SVM)、k近邻(KNN)和递归神经网络(RNN)等不同的机器学习模型进行分类操作,然后进行评估操作,产生不同的区分愤怒和厌恶情绪的识别率,最高可达82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emotion Recognition by Facial Features using Recurrent Neural Networks
This paper presents emotion recognition models using facial expression features. By detecting the face in videos and extracting local characteristics (landmarks) to generate the geometric-based features to discriminate between a set of five emotion expressions (amusement, anger, disgust, fear, and sadness) for videos from BioVid Emo database. The classification operation is done using different machine learning models including random forest (RF), support vector machines (SVM), k-nearest neighbors (KNN) and recurrent neural network (RNN), then the evaluation operation is done to generate different discrimination rates that reached up to 82% to discriminate between anger and disgust emotions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信