非线性分类器自适应自回归脑电特征分类的实现

Muddasir Ahmad, M. Aqil
{"title":"非线性分类器自适应自回归脑电特征分类的实现","authors":"Muddasir Ahmad, M. Aqil","doi":"10.1109/RAEE.2015.7352749","DOIUrl":null,"url":null,"abstract":"The objective of this work is to realize two nonlinear classifiers for the adaptive autoregressive Electroencephalography (EEG) features. The EEG features are modeled as adaptive autoregressive model and estimated using recurring least square algorithm. Nonlinear classification is performed using multilayer perceptron (MLP) and radial basal function neural network to classify extracted features for a two classes experiment. For validation, hands movement imaginations based experiments are conducted using low price EEG EPOC headset. A comparative study, carried out amongst the nonlinear classifiers and with a linear discriminant analysis, demonstrates the dominance of the MLP as nonlinear classifier.","PeriodicalId":424263,"journal":{"name":"2015 Symposium on Recent Advances in Electrical Engineering (RAEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Implementation of nonlinear classifiers for adaptive autoregressive EEG features classification\",\"authors\":\"Muddasir Ahmad, M. Aqil\",\"doi\":\"10.1109/RAEE.2015.7352749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this work is to realize two nonlinear classifiers for the adaptive autoregressive Electroencephalography (EEG) features. The EEG features are modeled as adaptive autoregressive model and estimated using recurring least square algorithm. Nonlinear classification is performed using multilayer perceptron (MLP) and radial basal function neural network to classify extracted features for a two classes experiment. For validation, hands movement imaginations based experiments are conducted using low price EEG EPOC headset. A comparative study, carried out amongst the nonlinear classifiers and with a linear discriminant analysis, demonstrates the dominance of the MLP as nonlinear classifier.\",\"PeriodicalId\":424263,\"journal\":{\"name\":\"2015 Symposium on Recent Advances in Electrical Engineering (RAEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Symposium on Recent Advances in Electrical Engineering (RAEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAEE.2015.7352749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Symposium on Recent Advances in Electrical Engineering (RAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAEE.2015.7352749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文的目标是实现两种非线性的自适应自回归脑电图特征分类器。采用自适应自回归模型对脑电特征进行建模,并用循环最小二乘算法对脑电特征进行估计。利用多层感知器(MLP)和径向基函数神经网络对提取的特征进行非线性分类,并进行两类实验。为了验证该方法的有效性,利用低价EEG EPOC头戴设备进行了基于手部运动想象的实验。在非线性分类器之间进行了比较研究,并进行了线性判别分析,证明了MLP作为非线性分类器的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of nonlinear classifiers for adaptive autoregressive EEG features classification
The objective of this work is to realize two nonlinear classifiers for the adaptive autoregressive Electroencephalography (EEG) features. The EEG features are modeled as adaptive autoregressive model and estimated using recurring least square algorithm. Nonlinear classification is performed using multilayer perceptron (MLP) and radial basal function neural network to classify extracted features for a two classes experiment. For validation, hands movement imaginations based experiments are conducted using low price EEG EPOC headset. A comparative study, carried out amongst the nonlinear classifiers and with a linear discriminant analysis, demonstrates the dominance of the MLP as nonlinear classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信