{"title":"指令集扩展中架构可见存储的推测性DMA","authors":"Theo Kluter, P. Brisk, P. Ienne, E. Charbon","doi":"10.1145/1450135.1450191","DOIUrl":null,"url":null,"abstract":"Instruction set extensions (ISEs) can accelerate embedded processor performance. Many algorithms for ISE generation have shown good potential; some of them have recently been expanded to include Architecturally Visible Storage (AVS) - compiler-controlled memories, similar to scratchpads, that are accessible only to ISEs. To achieve a speedup using AVS, Direct Memory Access (DMA) transfers are required to move data from the main memory to the AVS; unfortunately, this creates coherence problems between the AVS and the cache, which previous methods for ISEs with AVS failed to address; additionally, these methods need to leave many conservative DMA transfers in place, whose execution significantly limits the achievable speedup. This paper presents a memory coherence scheme for ISEs with AVS, which can ensure execution correctness and memory consistency with minimal area overhead. We also present a method that speculatively removes redundant DMA transfers. Cycle-accurate experimental results were obtained using an FPGA-emulation platform. These results show that the application-specific instruction-set extended processors with speculative DMA-enhanced AVS gain significantly over previous techniques, despite the overhead of the coherence mechanism.","PeriodicalId":300268,"journal":{"name":"International Conference on Hardware/Software Codesign and System Synthesis","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Speculative DMA for architecturally visible storage in instruction set extensions\",\"authors\":\"Theo Kluter, P. Brisk, P. Ienne, E. Charbon\",\"doi\":\"10.1145/1450135.1450191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instruction set extensions (ISEs) can accelerate embedded processor performance. Many algorithms for ISE generation have shown good potential; some of them have recently been expanded to include Architecturally Visible Storage (AVS) - compiler-controlled memories, similar to scratchpads, that are accessible only to ISEs. To achieve a speedup using AVS, Direct Memory Access (DMA) transfers are required to move data from the main memory to the AVS; unfortunately, this creates coherence problems between the AVS and the cache, which previous methods for ISEs with AVS failed to address; additionally, these methods need to leave many conservative DMA transfers in place, whose execution significantly limits the achievable speedup. This paper presents a memory coherence scheme for ISEs with AVS, which can ensure execution correctness and memory consistency with minimal area overhead. We also present a method that speculatively removes redundant DMA transfers. Cycle-accurate experimental results were obtained using an FPGA-emulation platform. These results show that the application-specific instruction-set extended processors with speculative DMA-enhanced AVS gain significantly over previous techniques, despite the overhead of the coherence mechanism.\",\"PeriodicalId\":300268,\"journal\":{\"name\":\"International Conference on Hardware/Software Codesign and System Synthesis\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Hardware/Software Codesign and System Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1450135.1450191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Hardware/Software Codesign and System Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1450135.1450191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Speculative DMA for architecturally visible storage in instruction set extensions
Instruction set extensions (ISEs) can accelerate embedded processor performance. Many algorithms for ISE generation have shown good potential; some of them have recently been expanded to include Architecturally Visible Storage (AVS) - compiler-controlled memories, similar to scratchpads, that are accessible only to ISEs. To achieve a speedup using AVS, Direct Memory Access (DMA) transfers are required to move data from the main memory to the AVS; unfortunately, this creates coherence problems between the AVS and the cache, which previous methods for ISEs with AVS failed to address; additionally, these methods need to leave many conservative DMA transfers in place, whose execution significantly limits the achievable speedup. This paper presents a memory coherence scheme for ISEs with AVS, which can ensure execution correctness and memory consistency with minimal area overhead. We also present a method that speculatively removes redundant DMA transfers. Cycle-accurate experimental results were obtained using an FPGA-emulation platform. These results show that the application-specific instruction-set extended processors with speculative DMA-enhanced AVS gain significantly over previous techniques, despite the overhead of the coherence mechanism.