{"title":"利用各种离群值检测方法分析用电量数据","authors":"Sidi Mohammed Kaddour, M. Lehsaini","doi":"10.4018/IJSSCI.2021070102","DOIUrl":null,"url":null,"abstract":"Nowadays, detecting abnormal power consumption behavior of householders has become a big concern in the smart energy field; overcoming this limitation will help in identifying efficient solutions to reduce power consumption. This paper proposes a new methodology for detecting abnormal energy consumption in residential buildings based on hourly readings of energy consumption and peak energy consumption. The proposition is implemented using three unsupervised outlier detection methods (isolation forest, one-class SVM, and k-means). The authors propose this solution to help residents in reducing operating costs by detecting consumption failures that cannot be detected easily. On the other hand, energy providers will have the access to detailed data about anomalies, faulty appliances, and houses with poor power control strategy in general, which will help in pinpointing overconsumption problems, thus enhancing human awareness and reducing energy consumption.","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Electricity Consumption Data Analysis Using Various Outlier Detection Methods\",\"authors\":\"Sidi Mohammed Kaddour, M. Lehsaini\",\"doi\":\"10.4018/IJSSCI.2021070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, detecting abnormal power consumption behavior of householders has become a big concern in the smart energy field; overcoming this limitation will help in identifying efficient solutions to reduce power consumption. This paper proposes a new methodology for detecting abnormal energy consumption in residential buildings based on hourly readings of energy consumption and peak energy consumption. The proposition is implemented using three unsupervised outlier detection methods (isolation forest, one-class SVM, and k-means). The authors propose this solution to help residents in reducing operating costs by detecting consumption failures that cannot be detected easily. On the other hand, energy providers will have the access to detailed data about anomalies, faulty appliances, and houses with poor power control strategy in general, which will help in pinpointing overconsumption problems, thus enhancing human awareness and reducing energy consumption.\",\"PeriodicalId\":432255,\"journal\":{\"name\":\"Int. J. Softw. Sci. Comput. Intell.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Softw. Sci. Comput. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSSCI.2021070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSSCI.2021070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electricity Consumption Data Analysis Using Various Outlier Detection Methods
Nowadays, detecting abnormal power consumption behavior of householders has become a big concern in the smart energy field; overcoming this limitation will help in identifying efficient solutions to reduce power consumption. This paper proposes a new methodology for detecting abnormal energy consumption in residential buildings based on hourly readings of energy consumption and peak energy consumption. The proposition is implemented using three unsupervised outlier detection methods (isolation forest, one-class SVM, and k-means). The authors propose this solution to help residents in reducing operating costs by detecting consumption failures that cannot be detected easily. On the other hand, energy providers will have the access to detailed data about anomalies, faulty appliances, and houses with poor power control strategy in general, which will help in pinpointing overconsumption problems, thus enhancing human awareness and reducing energy consumption.