推车系统倒立摆状态估计与最优控制的随机逼近方法

Xian Wen Sim, S. Kek, Sy Yi Sim
{"title":"推车系统倒立摆状态估计与最优控制的随机逼近方法","authors":"Xian Wen Sim, S. Kek, Sy Yi Sim","doi":"10.3934/aci.2023005","DOIUrl":null,"url":null,"abstract":"\n In this paper, optimal control of an inverted pendulum on a cart system is studied. Since the nonlinear structure of the system is complex, and in the presence of random disturbances, optimization and control of the motion of the system become more challenging. For handling this system, a discrete-time stochastic optimal control problem for the system is described, where the external force is considered as the control input. By defining a loss function, namely, the mean squared errors to be minimized, the stochastic approximation (SA) approach is applied to estimate the state dynamics. In addition, the Hamiltonian function is defined, and the first-order necessary conditions are derived. The gradient of the cost function is determined so that the SA approach is employed to update the control sequences. For illustration, considering the values of the related parameters in the system, the discrete-time stochastic optimal control problem is solved iteratively by using the SA algorithm. The simulation results show that the state estimation and the optimal control law design are well performed with the SA algorithm, and the motion of the inverted pendulum cart is addressed satisfactorily. In conclusion, the efficiency of the SA approach for solving the inverted pendulum on a cart system is verified.\n","PeriodicalId":414924,"journal":{"name":"Applied Computing and Intelligence","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State estimation and optimal control of an inverted pendulum on a cart system with stochastic approximation approach\",\"authors\":\"Xian Wen Sim, S. Kek, Sy Yi Sim\",\"doi\":\"10.3934/aci.2023005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, optimal control of an inverted pendulum on a cart system is studied. Since the nonlinear structure of the system is complex, and in the presence of random disturbances, optimization and control of the motion of the system become more challenging. For handling this system, a discrete-time stochastic optimal control problem for the system is described, where the external force is considered as the control input. By defining a loss function, namely, the mean squared errors to be minimized, the stochastic approximation (SA) approach is applied to estimate the state dynamics. In addition, the Hamiltonian function is defined, and the first-order necessary conditions are derived. The gradient of the cost function is determined so that the SA approach is employed to update the control sequences. For illustration, considering the values of the related parameters in the system, the discrete-time stochastic optimal control problem is solved iteratively by using the SA algorithm. The simulation results show that the state estimation and the optimal control law design are well performed with the SA algorithm, and the motion of the inverted pendulum cart is addressed satisfactorily. In conclusion, the efficiency of the SA approach for solving the inverted pendulum on a cart system is verified.\\n\",\"PeriodicalId\":414924,\"journal\":{\"name\":\"Applied Computing and Intelligence\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/aci.2023005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/aci.2023005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了倒立摆小车系统的最优控制问题。由于系统的非线性结构复杂,且存在随机干扰,系统运动的优化和控制变得更加具有挑战性。为了处理该系统,描述了系统的离散时间随机最优控制问题,其中外力作为控制输入。通过定义损失函数,即要最小化的均方误差,应用随机逼近(SA)方法估计状态动力学。此外,还定义了哈密顿函数,并推导了一阶必要条件。确定了代价函数的梯度,采用SA方法更新控制序列。举例说明,考虑系统中相关参数的取值,采用SA算法迭代求解离散时间随机最优控制问题。仿真结果表明,该算法能很好地进行状态估计和最优控制律设计,并能很好地解决倒立摆小车的运动问题。最后,验证了SA法求解推车系统倒立摆的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State estimation and optimal control of an inverted pendulum on a cart system with stochastic approximation approach
In this paper, optimal control of an inverted pendulum on a cart system is studied. Since the nonlinear structure of the system is complex, and in the presence of random disturbances, optimization and control of the motion of the system become more challenging. For handling this system, a discrete-time stochastic optimal control problem for the system is described, where the external force is considered as the control input. By defining a loss function, namely, the mean squared errors to be minimized, the stochastic approximation (SA) approach is applied to estimate the state dynamics. In addition, the Hamiltonian function is defined, and the first-order necessary conditions are derived. The gradient of the cost function is determined so that the SA approach is employed to update the control sequences. For illustration, considering the values of the related parameters in the system, the discrete-time stochastic optimal control problem is solved iteratively by using the SA algorithm. The simulation results show that the state estimation and the optimal control law design are well performed with the SA algorithm, and the motion of the inverted pendulum cart is addressed satisfactorily. In conclusion, the efficiency of the SA approach for solving the inverted pendulum on a cart system is verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信