S. Warren-Smith, L. Nguyen, H. Ebendorff‐Heidepriem, T. Monro
{"title":"单材料二氧化硅光纤高温传感","authors":"S. Warren-Smith, L. Nguyen, H. Ebendorff‐Heidepriem, T. Monro","doi":"10.1117/12.2265205","DOIUrl":null,"url":null,"abstract":"We present recent developments in high temperature sensing using single material silica optical fibers. By using a single material fiber, in this case a suspended-core fiber, we avoid effects due to dopant diffusion at high temperature. This allows the measurement of temperatures up to the dilatometric softening temperature at approximately 1300°C. We demonstrate and compare high temperature sensing in two configurations. The first exploits a small section of single material fiber spliced onto a length of conventional single mode fiber, which operates through multimode interference. The second utilizes a type 11 fiber Bragg grating written via femtosecond laser ablation.","PeriodicalId":198716,"journal":{"name":"2017 25th Optical Fiber Sensors Conference (OFS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High temperature sensing with single material silica optical fibers\",\"authors\":\"S. Warren-Smith, L. Nguyen, H. Ebendorff‐Heidepriem, T. Monro\",\"doi\":\"10.1117/12.2265205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present recent developments in high temperature sensing using single material silica optical fibers. By using a single material fiber, in this case a suspended-core fiber, we avoid effects due to dopant diffusion at high temperature. This allows the measurement of temperatures up to the dilatometric softening temperature at approximately 1300°C. We demonstrate and compare high temperature sensing in two configurations. The first exploits a small section of single material fiber spliced onto a length of conventional single mode fiber, which operates through multimode interference. The second utilizes a type 11 fiber Bragg grating written via femtosecond laser ablation.\",\"PeriodicalId\":198716,\"journal\":{\"name\":\"2017 25th Optical Fiber Sensors Conference (OFS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th Optical Fiber Sensors Conference (OFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2265205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Optical Fiber Sensors Conference (OFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2265205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High temperature sensing with single material silica optical fibers
We present recent developments in high temperature sensing using single material silica optical fibers. By using a single material fiber, in this case a suspended-core fiber, we avoid effects due to dopant diffusion at high temperature. This allows the measurement of temperatures up to the dilatometric softening temperature at approximately 1300°C. We demonstrate and compare high temperature sensing in two configurations. The first exploits a small section of single material fiber spliced onto a length of conventional single mode fiber, which operates through multimode interference. The second utilizes a type 11 fiber Bragg grating written via femtosecond laser ablation.