阻抗扇形散射波场的渐近性

M. Lyalinov, S. V. Polyanskaya
{"title":"阻抗扇形散射波场的渐近性","authors":"M. Lyalinov, S. V. Polyanskaya","doi":"10.1109/DD46733.2019.9016576","DOIUrl":null,"url":null,"abstract":"In this work we study the scattering of a plane incident wave by a semi-infinite impedance sector. We develop an approach that enables us to compute different components in the far-field asymptotics. The method is based on the Sommerfeld integral representation of the scattered wave field, on the careful study of singularities of the integrand and on the asymptotic evaluation of the integral by means of the saddle point technique. In this way, we describe the waves reflected from the sector, diffracted by its edges or scattered by the vertex as well as the surface waves.","PeriodicalId":319575,"journal":{"name":"2019 Days on Diffraction (DD)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The asymptotics of the wave field scattered by an impedance sector\",\"authors\":\"M. Lyalinov, S. V. Polyanskaya\",\"doi\":\"10.1109/DD46733.2019.9016576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we study the scattering of a plane incident wave by a semi-infinite impedance sector. We develop an approach that enables us to compute different components in the far-field asymptotics. The method is based on the Sommerfeld integral representation of the scattered wave field, on the careful study of singularities of the integrand and on the asymptotic evaluation of the integral by means of the saddle point technique. In this way, we describe the waves reflected from the sector, diffracted by its edges or scattered by the vertex as well as the surface waves.\",\"PeriodicalId\":319575,\"journal\":{\"name\":\"2019 Days on Diffraction (DD)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Days on Diffraction (DD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD46733.2019.9016576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Days on Diffraction (DD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD46733.2019.9016576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了半无限阻抗扇区对平面入射波的散射。我们开发了一种方法,使我们能够计算远场渐近的不同分量。该方法基于散射波场的Sommerfeld积分表示,对被积函数的奇异性进行了细致的研究,并利用鞍点技术对积分进行了渐近求值。用这种方式,我们描述了从扇形反射的波,由其边缘衍射的波或由顶点散射的波以及表面波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The asymptotics of the wave field scattered by an impedance sector
In this work we study the scattering of a plane incident wave by a semi-infinite impedance sector. We develop an approach that enables us to compute different components in the far-field asymptotics. The method is based on the Sommerfeld integral representation of the scattered wave field, on the careful study of singularities of the integrand and on the asymptotic evaluation of the integral by means of the saddle point technique. In this way, we describe the waves reflected from the sector, diffracted by its edges or scattered by the vertex as well as the surface waves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信