基于节点排序和智能链路映射的高效虚拟网络嵌入

Khoa T. D. Nguyen, Qiao Lu, Changcheng Huang
{"title":"基于节点排序和智能链路映射的高效虚拟网络嵌入","authors":"Khoa T. D. Nguyen, Qiao Lu, Changcheng Huang","doi":"10.1109/CloudNet51028.2020.9335801","DOIUrl":null,"url":null,"abstract":"Network virtualization (NV) is emerged as a key enabler for the success of the future virtualized networks (e.g. 5G networks and smart Internet of Things (IoT)). Virtual Network Embedding (VNE) that addresses the embedding problems of heterogeneous virtual networks (VNs) onto a physical infrastructure is a main challenge in NV. Network topology attributes and network resource-considered (NTANRC) algorithm is a virtual node mapping mechanism that considers essential network features and global network resources for ranking both substrate and virtual nodes prior to embedding each given virtual network request (VNR). In this paper, we propose NTANRC combined with a distributed parallel Genetic Algorithm (GA) for virtual link mapping, namely NTANRC-GA, to solve online VNE problem. Extensive evaluation results show that our proposed solution not only achieves better performance compared to state-of-the-art VNE algorithms, but also challenges the rapid speed of shortest path (SP) method. NTANRC algorithm and the parallel GA-based algorithm are reverse compliments of each other to achieve an efficient VNE solution.","PeriodicalId":156419,"journal":{"name":"2020 IEEE 9th International Conference on Cloud Networking (CloudNet)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient Virtual Network Embedding with Node Ranking and Intelligent Link Mapping\",\"authors\":\"Khoa T. D. Nguyen, Qiao Lu, Changcheng Huang\",\"doi\":\"10.1109/CloudNet51028.2020.9335801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network virtualization (NV) is emerged as a key enabler for the success of the future virtualized networks (e.g. 5G networks and smart Internet of Things (IoT)). Virtual Network Embedding (VNE) that addresses the embedding problems of heterogeneous virtual networks (VNs) onto a physical infrastructure is a main challenge in NV. Network topology attributes and network resource-considered (NTANRC) algorithm is a virtual node mapping mechanism that considers essential network features and global network resources for ranking both substrate and virtual nodes prior to embedding each given virtual network request (VNR). In this paper, we propose NTANRC combined with a distributed parallel Genetic Algorithm (GA) for virtual link mapping, namely NTANRC-GA, to solve online VNE problem. Extensive evaluation results show that our proposed solution not only achieves better performance compared to state-of-the-art VNE algorithms, but also challenges the rapid speed of shortest path (SP) method. NTANRC algorithm and the parallel GA-based algorithm are reverse compliments of each other to achieve an efficient VNE solution.\",\"PeriodicalId\":156419,\"journal\":{\"name\":\"2020 IEEE 9th International Conference on Cloud Networking (CloudNet)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 9th International Conference on Cloud Networking (CloudNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudNet51028.2020.9335801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 9th International Conference on Cloud Networking (CloudNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudNet51028.2020.9335801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

网络虚拟化(NV)成为未来虚拟化网络(例如5G网络和智能物联网(IoT))成功的关键推动者。虚拟网络嵌入(VNE)解决了异构虚拟网络(VNs)在物理基础设施上的嵌入问题,是NV的主要挑战。网络拓扑属性和网络资源考虑(NTANRC)算法是一种虚拟节点映射机制,它在嵌入每个给定的虚拟网络请求(VNR)之前考虑基本网络特征和全局网络资源,对底层和虚拟节点进行排序。在本文中,我们提出了NTANRC结合一种用于虚拟链路映射的分布式并行遗传算法(NTANRC-GA)来解决在线VNE问题。广泛的评估结果表明,我们提出的解决方案不仅比目前最先进的VNE算法具有更好的性能,而且对最短路径(SP)方法的快速速度提出了挑战。NTANRC算法与基于并行遗传算法的算法互为互补,实现了高效的VNE求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Virtual Network Embedding with Node Ranking and Intelligent Link Mapping
Network virtualization (NV) is emerged as a key enabler for the success of the future virtualized networks (e.g. 5G networks and smart Internet of Things (IoT)). Virtual Network Embedding (VNE) that addresses the embedding problems of heterogeneous virtual networks (VNs) onto a physical infrastructure is a main challenge in NV. Network topology attributes and network resource-considered (NTANRC) algorithm is a virtual node mapping mechanism that considers essential network features and global network resources for ranking both substrate and virtual nodes prior to embedding each given virtual network request (VNR). In this paper, we propose NTANRC combined with a distributed parallel Genetic Algorithm (GA) for virtual link mapping, namely NTANRC-GA, to solve online VNE problem. Extensive evaluation results show that our proposed solution not only achieves better performance compared to state-of-the-art VNE algorithms, but also challenges the rapid speed of shortest path (SP) method. NTANRC algorithm and the parallel GA-based algorithm are reverse compliments of each other to achieve an efficient VNE solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信