色散参数的估计

W. A. Thompson
{"title":"色散参数的估计","authors":"W. A. Thompson","doi":"10.6028/JRES.066B.016","DOIUrl":null,"url":null,"abstract":"This paper deals with a topi c in multivariate a nalys is. Consider that a sample of size n+ 1 has been collected from a p-variate normal distribution having dispersion matrix (CT ii'). Let a;r/n denote the usual unbiased estimate of CTW. Further, let O< l<u be constants such that all cha racteristic roots of a matrix having t he Wishart distribution lie in t he interval [I, u] with probability I a . A t heorem of Roy, Bose, and Gnanadesikan [A nn . Math. Stat. 24. 513536 (1953); Biometrika 44, 399410 (1957)] may be stated as follows: The probability is 1a t hat every principal minor determinant of II (aii ') (CT jj') and of (CTii,)ul(a jj') is nonnegat ive. The previous result may be used to prove t he main theorem of the p resent paper. Theorem: T he probability is at least 1a t hat t he following system of re lat ions hold simultaneo us ly : ulai i ~CT 'i ~I-laii; j = l , ... , p and ICT ii,-}f (11-1 + 11)0 ii·1 ~7WI -1,1) (a iiai';') ! ~' j r= j'.","PeriodicalId":408709,"journal":{"name":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1962-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Estimation of dispersion parameters\",\"authors\":\"W. A. Thompson\",\"doi\":\"10.6028/JRES.066B.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a topi c in multivariate a nalys is. Consider that a sample of size n+ 1 has been collected from a p-variate normal distribution having dispersion matrix (CT ii'). Let a;r/n denote the usual unbiased estimate of CTW. Further, let O< l<u be constants such that all cha racteristic roots of a matrix having t he Wishart distribution lie in t he interval [I, u] with probability I a . A t heorem of Roy, Bose, and Gnanadesikan [A nn . Math. Stat. 24. 513536 (1953); Biometrika 44, 399410 (1957)] may be stated as follows: The probability is 1a t hat every principal minor determinant of II (aii ') (CT jj') and of (CTii,)ul(a jj') is nonnegat ive. The previous result may be used to prove t he main theorem of the p resent paper. Theorem: T he probability is at least 1a t hat t he following system of re lat ions hold simultaneo us ly : ulai i ~CT 'i ~I-laii; j = l , ... , p and ICT ii,-}f (11-1 + 11)0 ii·1 ~7WI -1,1) (a iiai';') ! ~' j r= j'.\",\"PeriodicalId\":408709,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1962-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.066B.016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.066B.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文讨论了多元分析中的一个问题。考虑从具有弥散矩阵(CT ii')的p变量正态分布中收集大小为n+ 1的样本。设a;r/n表示CTW的通常无偏估计。进一步,设O< l本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Estimation of dispersion parameters
This paper deals with a topi c in multivariate a nalys is. Consider that a sample of size n+ 1 has been collected from a p-variate normal distribution having dispersion matrix (CT ii'). Let a;r/n denote the usual unbiased estimate of CTW. Further, let O< l
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信