基于Dropout正则化的图卷积网络节点分类

Bing-Yu Xiao, C. Tseng, Su-Ling Lee
{"title":"基于Dropout正则化的图卷积网络节点分类","authors":"Bing-Yu Xiao, C. Tseng, Su-Ling Lee","doi":"10.1109/TENCON54134.2021.9707262","DOIUrl":null,"url":null,"abstract":"In this paper, node classification using graph convolutional network (GCN) is studied. First, problem formulation of node classification is described. Then, the graph convolutional operator (GCO) is constructed and it is combined with nonlinear activation function to obtain the two-layer GCN for tackling the node classification problem. Next, the dropout regularization is incorporated into the GCN for solving the overfitting problem. Because input feature data is very sparse, sparse dropout is used in the first layer and general dropout is employed in the second layer. Finally, citation network datasets, t-SNE data visualization, ablation study, and classification accuracy are used to evaluate the performance of the GCN with dropout regularization.","PeriodicalId":405859,"journal":{"name":"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Node Classification Using Graph Convolutional Network with Dropout Regularization\",\"authors\":\"Bing-Yu Xiao, C. Tseng, Su-Ling Lee\",\"doi\":\"10.1109/TENCON54134.2021.9707262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, node classification using graph convolutional network (GCN) is studied. First, problem formulation of node classification is described. Then, the graph convolutional operator (GCO) is constructed and it is combined with nonlinear activation function to obtain the two-layer GCN for tackling the node classification problem. Next, the dropout regularization is incorporated into the GCN for solving the overfitting problem. Because input feature data is very sparse, sparse dropout is used in the first layer and general dropout is employed in the second layer. Finally, citation network datasets, t-SNE data visualization, ablation study, and classification accuracy are used to evaluate the performance of the GCN with dropout regularization.\",\"PeriodicalId\":405859,\"journal\":{\"name\":\"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON54134.2021.9707262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON54134.2021.9707262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了基于图卷积网络(GCN)的节点分类。首先,描述了节点分类的问题表述。然后,构造图卷积算子(GCO),并将其与非线性激活函数相结合,得到求解节点分类问题的两层GCN;接下来,将dropout正则化纳入GCN中,解决过拟合问题。由于输入特征数据非常稀疏,所以第一层采用稀疏dropout,第二层采用一般dropout。最后,利用引文网络数据集、t-SNE数据可视化、消融研究和分类精度来评估dropout正则化GCN的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Node Classification Using Graph Convolutional Network with Dropout Regularization
In this paper, node classification using graph convolutional network (GCN) is studied. First, problem formulation of node classification is described. Then, the graph convolutional operator (GCO) is constructed and it is combined with nonlinear activation function to obtain the two-layer GCN for tackling the node classification problem. Next, the dropout regularization is incorporated into the GCN for solving the overfitting problem. Because input feature data is very sparse, sparse dropout is used in the first layer and general dropout is employed in the second layer. Finally, citation network datasets, t-SNE data visualization, ablation study, and classification accuracy are used to evaluate the performance of the GCN with dropout regularization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信