基于HJ方程的有限视界非线性系统最优反馈控制

J. Imae, Masakatsu Kawanoue, Tomoaki Kobayashi
{"title":"基于HJ方程的有限视界非线性系统最优反馈控制","authors":"J. Imae, Masakatsu Kawanoue, Tomoaki Kobayashi","doi":"10.1109/ICIT.2015.7125125","DOIUrl":null,"url":null,"abstract":"An optimal control problem for nonlinear systems with a finite horizon are considered. In the design process, we meet the Hamilton Jacobi (HJ) equations which are extremely difficult to solve. Even so, there are a lot of effective techniques to numerically solve HJ equations when we restrict ourselves to the infinite horizon case. This paper proposes a new approach to tackle with the finite horizon case, based on the fruitful results obtained in the infinite horizon case. Some simulations are given to illustrate the effectiveness of the approach.","PeriodicalId":156295,"journal":{"name":"2015 IEEE International Conference on Industrial Technology (ICIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal feedback control of nonlinear systems with a finite horizon based on HJ equations\",\"authors\":\"J. Imae, Masakatsu Kawanoue, Tomoaki Kobayashi\",\"doi\":\"10.1109/ICIT.2015.7125125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An optimal control problem for nonlinear systems with a finite horizon are considered. In the design process, we meet the Hamilton Jacobi (HJ) equations which are extremely difficult to solve. Even so, there are a lot of effective techniques to numerically solve HJ equations when we restrict ourselves to the infinite horizon case. This paper proposes a new approach to tackle with the finite horizon case, based on the fruitful results obtained in the infinite horizon case. Some simulations are given to illustrate the effectiveness of the approach.\",\"PeriodicalId\":156295,\"journal\":{\"name\":\"2015 IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2015.7125125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2015.7125125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究一类具有有限视界的非线性系统的最优控制问题。在设计过程中,我们遇到了极难求解的Hamilton Jacobi (HJ)方程。即便如此,当我们将自己限制在无限视界的情况下,仍然有很多有效的方法来数值解HJ方程。本文基于在无限视界情况下取得的丰硕成果,提出了一种处理有限视界情况的新方法。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal feedback control of nonlinear systems with a finite horizon based on HJ equations
An optimal control problem for nonlinear systems with a finite horizon are considered. In the design process, we meet the Hamilton Jacobi (HJ) equations which are extremely difficult to solve. Even so, there are a lot of effective techniques to numerically solve HJ equations when we restrict ourselves to the infinite horizon case. This paper proposes a new approach to tackle with the finite horizon case, based on the fruitful results obtained in the infinite horizon case. Some simulations are given to illustrate the effectiveness of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信