滚动工况下棒束通道自然循环流动不稳定性研究

Kun Cheng, Jian Deng, R. Cai, Libo Qian, Peiyao Qi, Bingzheng Ke
{"title":"滚动工况下棒束通道自然循环流动不稳定性研究","authors":"Kun Cheng, Jian Deng, R. Cai, Libo Qian, Peiyao Qi, Bingzheng Ke","doi":"10.1115/icone2020-16362","DOIUrl":null,"url":null,"abstract":"\n The effects of rolling condition on the flow instability characteristics of natural circulation (NC) in rod bundle channel were experimentally studied. A 3 × 3 rod bundle channel is used as the testing section. The experimental system pressure range is 0.2 to 0.6 MPa, and the range of inlet subcooling is 10 to 70 °C. The ranges of rolling motion amplitude and period are 10 ∼ 20° and 10 ∼ 30s, respectively. Two typical two-phase flow instabilities in rod bundle channel under rolling condition were found in experiments: (a) the trough-type oscillation caused by the vapor generation at the minimum point of flow fluctuation and (b) the compound oscillation formed by the superposition of the trough-type oscillation and DWOI. Experimental results show that the rolling motion can reduce the threshold heating power of trough-type oscillation and cause the occurrence of NC flow instability in advance. But the rolling motion cannot affect the dimensionless boundary of DWOI in rod bundle channel.","PeriodicalId":414088,"journal":{"name":"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study on Natural Circulation Flow Instabilities in Rod Bundle Channel Under Rolling Condition\",\"authors\":\"Kun Cheng, Jian Deng, R. Cai, Libo Qian, Peiyao Qi, Bingzheng Ke\",\"doi\":\"10.1115/icone2020-16362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The effects of rolling condition on the flow instability characteristics of natural circulation (NC) in rod bundle channel were experimentally studied. A 3 × 3 rod bundle channel is used as the testing section. The experimental system pressure range is 0.2 to 0.6 MPa, and the range of inlet subcooling is 10 to 70 °C. The ranges of rolling motion amplitude and period are 10 ∼ 20° and 10 ∼ 30s, respectively. Two typical two-phase flow instabilities in rod bundle channel under rolling condition were found in experiments: (a) the trough-type oscillation caused by the vapor generation at the minimum point of flow fluctuation and (b) the compound oscillation formed by the superposition of the trough-type oscillation and DWOI. Experimental results show that the rolling motion can reduce the threshold heating power of trough-type oscillation and cause the occurrence of NC flow instability in advance. But the rolling motion cannot affect the dimensionless boundary of DWOI in rod bundle channel.\",\"PeriodicalId\":414088,\"journal\":{\"name\":\"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone2020-16362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone2020-16362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

实验研究了轧制条件对棒束通道内自然循环流动不稳定性的影响。采用3 × 3棒束通道作为试验断面。实验系统压力范围为0.2 ~ 0.6 MPa,进口过冷度范围为10 ~ 70℃。滚动运动幅度和周期范围分别为10 ~ 20°和10 ~ 30s。在实验中发现了两种典型的滚动条件下棒束通道两相流动不稳定性:(a)流动波动最小点处产生蒸汽引起的槽型振荡和(b)槽型振荡与DWOI叠加形成的复合振荡。实验结果表明,滚动运动可以降低槽型振荡的阈值加热功率,并导致数控流动不稳定的提前发生。但滚动运动不影响杆束沟道的无量纲边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on Natural Circulation Flow Instabilities in Rod Bundle Channel Under Rolling Condition
The effects of rolling condition on the flow instability characteristics of natural circulation (NC) in rod bundle channel were experimentally studied. A 3 × 3 rod bundle channel is used as the testing section. The experimental system pressure range is 0.2 to 0.6 MPa, and the range of inlet subcooling is 10 to 70 °C. The ranges of rolling motion amplitude and period are 10 ∼ 20° and 10 ∼ 30s, respectively. Two typical two-phase flow instabilities in rod bundle channel under rolling condition were found in experiments: (a) the trough-type oscillation caused by the vapor generation at the minimum point of flow fluctuation and (b) the compound oscillation formed by the superposition of the trough-type oscillation and DWOI. Experimental results show that the rolling motion can reduce the threshold heating power of trough-type oscillation and cause the occurrence of NC flow instability in advance. But the rolling motion cannot affect the dimensionless boundary of DWOI in rod bundle channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信