{"title":"基于 WiFi 的室内无线定位技术研究","authors":"Yuying Hou, Guoyue Sum, Binwen Fan","doi":"10.1109/ICNC.2014.6975984","DOIUrl":null,"url":null,"abstract":"The main research content of this article is based on fingerprint method of AP selection and location estimation algorithm. We introduce RANSAC algorithm used in image processing art to AP selection in the online stage for external detection. It can filter to remove the APs impacted by environmental variation, not only reduces the amount of calculation but also improves the positioning accuracy. Aiming at the disadvantages of traditional Bayesian algorithm and KNN algorithm, we improve the two kinds of algorithms. Based on traditional Bayesian algorithm, we adopt the concept of a regional division. Classification based on the traditional KNN algorithm is introduced into cluster and the cluster partition, allows a reference point to be assigned to multiple clusters, using different fingerprint in different clusters. Finally we adopt a new method of dynamic union combined with the above two kinds of improved algorithm. Based on the above research, the average error of our positioning system is 1.63 meters, the minimum error is 0.76 meters.","PeriodicalId":208779,"journal":{"name":"2014 10th International Conference on Natural Computation (ICNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"The indoor wireless location technology research based on WiFi\",\"authors\":\"Yuying Hou, Guoyue Sum, Binwen Fan\",\"doi\":\"10.1109/ICNC.2014.6975984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main research content of this article is based on fingerprint method of AP selection and location estimation algorithm. We introduce RANSAC algorithm used in image processing art to AP selection in the online stage for external detection. It can filter to remove the APs impacted by environmental variation, not only reduces the amount of calculation but also improves the positioning accuracy. Aiming at the disadvantages of traditional Bayesian algorithm and KNN algorithm, we improve the two kinds of algorithms. Based on traditional Bayesian algorithm, we adopt the concept of a regional division. Classification based on the traditional KNN algorithm is introduced into cluster and the cluster partition, allows a reference point to be assigned to multiple clusters, using different fingerprint in different clusters. Finally we adopt a new method of dynamic union combined with the above two kinds of improved algorithm. Based on the above research, the average error of our positioning system is 1.63 meters, the minimum error is 0.76 meters.\",\"PeriodicalId\":208779,\"journal\":{\"name\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2014.6975984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Natural Computation (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2014.6975984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
摘要
本文的主要研究内容是基于指纹法的 AP 选择和位置估计算法。我们将图像处理技术中的 RANSAC 算法引入到外部检测在线阶段的 AP 选择中。它可以过滤掉受环境变化影响的 AP,不仅减少了计算量,还提高了定位精度。针对传统贝叶斯算法和 KNN 算法的缺点,我们对这两种算法进行了改进。在传统贝叶斯算法的基础上,我们采用了区域划分的概念。在传统 KNN 算法的基础上,将分类引入到簇和簇划分中,允许将一个参考点分配到多个簇中,在不同簇中使用不同的指纹。最后,我们结合以上两种改进算法,采用了动态联合的新方法。基于上述研究,我们的定位系统的平均误差为 1.63 米,最小误差为 0.76 米。
The indoor wireless location technology research based on WiFi
The main research content of this article is based on fingerprint method of AP selection and location estimation algorithm. We introduce RANSAC algorithm used in image processing art to AP selection in the online stage for external detection. It can filter to remove the APs impacted by environmental variation, not only reduces the amount of calculation but also improves the positioning accuracy. Aiming at the disadvantages of traditional Bayesian algorithm and KNN algorithm, we improve the two kinds of algorithms. Based on traditional Bayesian algorithm, we adopt the concept of a regional division. Classification based on the traditional KNN algorithm is introduced into cluster and the cluster partition, allows a reference point to be assigned to multiple clusters, using different fingerprint in different clusters. Finally we adopt a new method of dynamic union combined with the above two kinds of improved algorithm. Based on the above research, the average error of our positioning system is 1.63 meters, the minimum error is 0.76 meters.