将快速类增强扩展到单镜头检测器对象检测框架

H. Witzgall
{"title":"将快速类增强扩展到单镜头检测器对象检测框架","authors":"H. Witzgall","doi":"10.1109/AERO55745.2023.10115620","DOIUrl":null,"url":null,"abstract":"This paper describes how eXtending Rapid Class Augmentation (XRCA) optimization can be integrated into a modern single-shot detector (SSD) architecture to enable fast and efficient progressive learning of new objects. The key distinguishing property of XRCA optimization is the incorporation of memory from previously learned classes into its weight update equations. This allows XRCA models to optimally learn new types of objects using just the new object training data. The new XRCA-SSD object detection framework replaces the traditional SSD's prediction heads with the XRCA prediction heads that use different XRCA optimization modes to update the weights. The mean average precision (mAP) performance metric for a SSD model trained using XRCA versus stochastic gradient descent is compared and the XRCA-SSD trained model is shown to greatly outperform the SGD-SSD model by largely mitigating the impact of catastrophic forgetting during new object augmentation. We expect the new XRCA-SSD framework to be especially relevant for real-time progressive learning applications where rapid training times are critical, and compute and memory are often limited.","PeriodicalId":344285,"journal":{"name":"2023 IEEE Aerospace Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending Rapid Class Augmentation to a Single-Shot-Detector Object Detection Framework\",\"authors\":\"H. Witzgall\",\"doi\":\"10.1109/AERO55745.2023.10115620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes how eXtending Rapid Class Augmentation (XRCA) optimization can be integrated into a modern single-shot detector (SSD) architecture to enable fast and efficient progressive learning of new objects. The key distinguishing property of XRCA optimization is the incorporation of memory from previously learned classes into its weight update equations. This allows XRCA models to optimally learn new types of objects using just the new object training data. The new XRCA-SSD object detection framework replaces the traditional SSD's prediction heads with the XRCA prediction heads that use different XRCA optimization modes to update the weights. The mean average precision (mAP) performance metric for a SSD model trained using XRCA versus stochastic gradient descent is compared and the XRCA-SSD trained model is shown to greatly outperform the SGD-SSD model by largely mitigating the impact of catastrophic forgetting during new object augmentation. We expect the new XRCA-SSD framework to be especially relevant for real-time progressive learning applications where rapid training times are critical, and compute and memory are often limited.\",\"PeriodicalId\":344285,\"journal\":{\"name\":\"2023 IEEE Aerospace Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO55745.2023.10115620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO55745.2023.10115620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了如何将扩展快速类增强(XRCA)优化集成到现代单镜头检测器(SSD)架构中,以实现对新对象的快速有效渐进学习。XRCA优化的关键区别在于将以前学习过的类的内存整合到其权重更新方程中。这允许XRCA模型仅使用新对象训练数据就能最佳地学习新类型的对象。新的XRCA-SSD目标检测框架用XRCA预测头取代了传统SSD的预测头,XRCA预测头使用不同的XRCA优化模式来更新权重。使用XRCA和随机梯度下降训练的SSD模型的平均精度(mAP)性能指标进行了比较,XRCA-SSD训练的模型在很大程度上减轻了新对象增强过程中灾难性遗忘的影响,从而大大优于SGD-SSD模型。我们期望新的XRCA-SSD框架特别适用于实时渐进式学习应用程序,在这些应用程序中,快速训练时间至关重要,并且计算和内存通常是有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extending Rapid Class Augmentation to a Single-Shot-Detector Object Detection Framework
This paper describes how eXtending Rapid Class Augmentation (XRCA) optimization can be integrated into a modern single-shot detector (SSD) architecture to enable fast and efficient progressive learning of new objects. The key distinguishing property of XRCA optimization is the incorporation of memory from previously learned classes into its weight update equations. This allows XRCA models to optimally learn new types of objects using just the new object training data. The new XRCA-SSD object detection framework replaces the traditional SSD's prediction heads with the XRCA prediction heads that use different XRCA optimization modes to update the weights. The mean average precision (mAP) performance metric for a SSD model trained using XRCA versus stochastic gradient descent is compared and the XRCA-SSD trained model is shown to greatly outperform the SGD-SSD model by largely mitigating the impact of catastrophic forgetting during new object augmentation. We expect the new XRCA-SSD framework to be especially relevant for real-time progressive learning applications where rapid training times are critical, and compute and memory are often limited.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信