一种基于松散同步八卦的聚合信息计算算法

Dongsheng Peng, Weidong Liu, Chuang Lin, Zhen Chen, Jiaxing Song
{"title":"一种基于松散同步八卦的聚合信息计算算法","authors":"Dongsheng Peng, Weidong Liu, Chuang Lin, Zhen Chen, Jiaxing Song","doi":"10.1109/LCN.2008.4664203","DOIUrl":null,"url":null,"abstract":"Many P2P applications necessitate statistics aggregate computation of certain information among all individual peers. In contrast to methods of constructing aggregation tree, centralized computing and flooding, gossip-based mechanism has the advantages of good robustness and moderate communication and computing costs. Most algorithms of this type perform aggregate computation recursively on successive time slots called rounds. They require rounds to be globally synchronous on all the nodes, which complicates the algorithm realization. To eliminate the requirement for global round synchronization, we propose a loosely synchronized algorithm to compute global statistic average based on random event triggering mechanism, and prove that the convergence time is O(logN)tau. We then propose a robust method to estimate the number of peers in the network based on this algorithm. Finally, a framework is proposed to generalize the computation of SUM, AVG, MAX, MIN, and CNT(N).","PeriodicalId":218005,"journal":{"name":"2008 33rd IEEE Conference on Local Computer Networks (LCN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A loosely synchronized gossip-based algorithm for aggregate information computation\",\"authors\":\"Dongsheng Peng, Weidong Liu, Chuang Lin, Zhen Chen, Jiaxing Song\",\"doi\":\"10.1109/LCN.2008.4664203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many P2P applications necessitate statistics aggregate computation of certain information among all individual peers. In contrast to methods of constructing aggregation tree, centralized computing and flooding, gossip-based mechanism has the advantages of good robustness and moderate communication and computing costs. Most algorithms of this type perform aggregate computation recursively on successive time slots called rounds. They require rounds to be globally synchronous on all the nodes, which complicates the algorithm realization. To eliminate the requirement for global round synchronization, we propose a loosely synchronized algorithm to compute global statistic average based on random event triggering mechanism, and prove that the convergence time is O(logN)tau. We then propose a robust method to estimate the number of peers in the network based on this algorithm. Finally, a framework is proposed to generalize the computation of SUM, AVG, MAX, MIN, and CNT(N).\",\"PeriodicalId\":218005,\"journal\":{\"name\":\"2008 33rd IEEE Conference on Local Computer Networks (LCN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 33rd IEEE Conference on Local Computer Networks (LCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN.2008.4664203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 33rd IEEE Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2008.4664203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

许多P2P应用程序需要在所有单个对等点之间统计某些信息的汇总计算。与构造聚合树、集中计算和泛洪方法相比,基于八卦的机制具有鲁棒性好、通信和计算成本适中的优点。这种类型的大多数算法在称为轮的连续时隙上递归地执行聚合计算。它们要求轮在所有节点上全局同步,这使算法实现变得复杂。为了消除全局轮同步的要求,我们提出了一种基于随机事件触发机制的松散同步算法来计算全局统计平均值,并证明了收敛时间为O(logN)tau。然后,我们提出了一种基于该算法的鲁棒方法来估计网络中的对等体数量。最后,提出了一个框架来推广SUM、AVG、MAX、MIN和CNT(N)的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A loosely synchronized gossip-based algorithm for aggregate information computation
Many P2P applications necessitate statistics aggregate computation of certain information among all individual peers. In contrast to methods of constructing aggregation tree, centralized computing and flooding, gossip-based mechanism has the advantages of good robustness and moderate communication and computing costs. Most algorithms of this type perform aggregate computation recursively on successive time slots called rounds. They require rounds to be globally synchronous on all the nodes, which complicates the algorithm realization. To eliminate the requirement for global round synchronization, we propose a loosely synchronized algorithm to compute global statistic average based on random event triggering mechanism, and prove that the convergence time is O(logN)tau. We then propose a robust method to estimate the number of peers in the network based on this algorithm. Finally, a framework is proposed to generalize the computation of SUM, AVG, MAX, MIN, and CNT(N).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信