{"title":"平面参数化齐次势的必要可积条件的计算","authors":"A. Bostan, Thierry Combot, M. S. E. Din","doi":"10.1145/2608628.2608662","DOIUrl":null,"url":null,"abstract":"Let <i>V</i> ∈ Q(<i>i</i>)(<b>a</b><sub>1</sub>,..., <b>a</b><sub><i>n</i></sub>)(<b>q</b><sub>1</sub>, <b>q</b><sub>2</sub>) be a rationally parametrized planar homogeneous potential of homogeneity degree <i>k</i> ≠ −2, 0, 2. We design an algorithm that computes polynomial <i>necessary</i> conditions on the parameters (<b>a</b><sub>1</sub>,..., <b>a</b><sub><i>n</i></sub>) such that the dynamical system associated to the potential <i>V</i> is integrable. These conditions originate from those of the Morales-Ramis-Simó integrability criterion near all Darboux points. The implementation of the algorithm allows to treat applications that were out of reach before, for instance concerning the non-integrability of polynomial potentials up to degree 9. Another striking application is the first complete proof of the non-integrability of the <i>collinear three body problem</i>.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computing necessary integrability conditions for planar parametrized homogeneous potentials\",\"authors\":\"A. Bostan, Thierry Combot, M. S. E. Din\",\"doi\":\"10.1145/2608628.2608662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <i>V</i> ∈ Q(<i>i</i>)(<b>a</b><sub>1</sub>,..., <b>a</b><sub><i>n</i></sub>)(<b>q</b><sub>1</sub>, <b>q</b><sub>2</sub>) be a rationally parametrized planar homogeneous potential of homogeneity degree <i>k</i> ≠ −2, 0, 2. We design an algorithm that computes polynomial <i>necessary</i> conditions on the parameters (<b>a</b><sub>1</sub>,..., <b>a</b><sub><i>n</i></sub>) such that the dynamical system associated to the potential <i>V</i> is integrable. These conditions originate from those of the Morales-Ramis-Simó integrability criterion near all Darboux points. The implementation of the algorithm allows to treat applications that were out of reach before, for instance concerning the non-integrability of polynomial potentials up to degree 9. Another striking application is the first complete proof of the non-integrability of the <i>collinear three body problem</i>.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computing necessary integrability conditions for planar parametrized homogeneous potentials
Let V ∈ Q(i)(a1,..., an)(q1, q2) be a rationally parametrized planar homogeneous potential of homogeneity degree k ≠ −2, 0, 2. We design an algorithm that computes polynomial necessary conditions on the parameters (a1,..., an) such that the dynamical system associated to the potential V is integrable. These conditions originate from those of the Morales-Ramis-Simó integrability criterion near all Darboux points. The implementation of the algorithm allows to treat applications that were out of reach before, for instance concerning the non-integrability of polynomial potentials up to degree 9. Another striking application is the first complete proof of the non-integrability of the collinear three body problem.