平面参数化齐次势的必要可积条件的计算

A. Bostan, Thierry Combot, M. S. E. Din
{"title":"平面参数化齐次势的必要可积条件的计算","authors":"A. Bostan, Thierry Combot, M. S. E. Din","doi":"10.1145/2608628.2608662","DOIUrl":null,"url":null,"abstract":"Let <i>V</i> ∈ Q(<i>i</i>)(<b>a</b><sub>1</sub>,..., <b>a</b><sub><i>n</i></sub>)(<b>q</b><sub>1</sub>, <b>q</b><sub>2</sub>) be a rationally parametrized planar homogeneous potential of homogeneity degree <i>k</i> ≠ −2, 0, 2. We design an algorithm that computes polynomial <i>necessary</i> conditions on the parameters (<b>a</b><sub>1</sub>,..., <b>a</b><sub><i>n</i></sub>) such that the dynamical system associated to the potential <i>V</i> is integrable. These conditions originate from those of the Morales-Ramis-Simó integrability criterion near all Darboux points. The implementation of the algorithm allows to treat applications that were out of reach before, for instance concerning the non-integrability of polynomial potentials up to degree 9. Another striking application is the first complete proof of the non-integrability of the <i>collinear three body problem</i>.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computing necessary integrability conditions for planar parametrized homogeneous potentials\",\"authors\":\"A. Bostan, Thierry Combot, M. S. E. Din\",\"doi\":\"10.1145/2608628.2608662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <i>V</i> ∈ Q(<i>i</i>)(<b>a</b><sub>1</sub>,..., <b>a</b><sub><i>n</i></sub>)(<b>q</b><sub>1</sub>, <b>q</b><sub>2</sub>) be a rationally parametrized planar homogeneous potential of homogeneity degree <i>k</i> ≠ −2, 0, 2. We design an algorithm that computes polynomial <i>necessary</i> conditions on the parameters (<b>a</b><sub>1</sub>,..., <b>a</b><sub><i>n</i></sub>) such that the dynamical system associated to the potential <i>V</i> is integrable. These conditions originate from those of the Morales-Ramis-Simó integrability criterion near all Darboux points. The implementation of the algorithm allows to treat applications that were out of reach before, for instance concerning the non-integrability of polynomial potentials up to degree 9. Another striking application is the first complete proof of the non-integrability of the <i>collinear three body problem</i>.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

设V∈Q(i)(a1,…, an)(q1, q2)为均匀度k≠−2,0,2的合理参数化平面均匀势。我们设计了一种算法,计算参数(a1,…,使得与势V相关的动力系统是可积的。这些条件源于Morales-Ramis-Simó在所有达布点附近的可积性准则。该算法的实现允许处理以前无法达到的应用,例如关于多项式势的不可积性直到9次。另一个引人注目的应用是首次完整地证明了共线三体问题的不可积性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing necessary integrability conditions for planar parametrized homogeneous potentials
Let V ∈ Q(i)(a1,..., an)(q1, q2) be a rationally parametrized planar homogeneous potential of homogeneity degree k ≠ −2, 0, 2. We design an algorithm that computes polynomial necessary conditions on the parameters (a1,..., an) such that the dynamical system associated to the potential V is integrable. These conditions originate from those of the Morales-Ramis-Simó integrability criterion near all Darboux points. The implementation of the algorithm allows to treat applications that were out of reach before, for instance concerning the non-integrability of polynomial potentials up to degree 9. Another striking application is the first complete proof of the non-integrability of the collinear three body problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信