有限链环的极大码

M. Sabiri
{"title":"有限链环的极大码","authors":"M. Sabiri","doi":"10.1109/COMMNET.2019.8742351","DOIUrl":null,"url":null,"abstract":"Coding theory is one of the bases of the information theory, this behind has experienced a spectacular evolution exploiting what has been achieved in the codes by the use of the concept of algebra. So to ensure a good transfer of information, it is better to use good codes by using a few aspects which represents an advantage. In this work, we will talk about the maximal codes on finite rings and exactly we will give the form of these codes for finite chain rings, this notion of maximality allows to show that all codes form classes what can server in decoding.","PeriodicalId":274754,"journal":{"name":"2019 International Conference on Advanced Communication Technologies and Networking (CommNet)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal Codes for Finite Chain Rings\",\"authors\":\"M. Sabiri\",\"doi\":\"10.1109/COMMNET.2019.8742351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coding theory is one of the bases of the information theory, this behind has experienced a spectacular evolution exploiting what has been achieved in the codes by the use of the concept of algebra. So to ensure a good transfer of information, it is better to use good codes by using a few aspects which represents an advantage. In this work, we will talk about the maximal codes on finite rings and exactly we will give the form of these codes for finite chain rings, this notion of maximality allows to show that all codes form classes what can server in decoding.\",\"PeriodicalId\":274754,\"journal\":{\"name\":\"2019 International Conference on Advanced Communication Technologies and Networking (CommNet)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Advanced Communication Technologies and Networking (CommNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMMNET.2019.8742351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Advanced Communication Technologies and Networking (CommNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMMNET.2019.8742351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

编码理论是信息论的基础之一,这一理论在利用代数概念在编码中所取得的成就的基础上经历了惊人的发展。因此,为了确保良好的信息传递,最好使用一些代表优势的方面来使用良好的代码。在这项工作中,我们将讨论有限环上的最大码,并给出有限环上这些码的确切形式,这种极大性的概念允许证明所有的码都形成了可以解码的类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal Codes for Finite Chain Rings
Coding theory is one of the bases of the information theory, this behind has experienced a spectacular evolution exploiting what has been achieved in the codes by the use of the concept of algebra. So to ensure a good transfer of information, it is better to use good codes by using a few aspects which represents an advantage. In this work, we will talk about the maximal codes on finite rings and exactly we will give the form of these codes for finite chain rings, this notion of maximality allows to show that all codes form classes what can server in decoding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信