具有不平衡数据量的自然语言处理任务的交互式注意模型浏览器

Zhihang Dong, Tongshuang Sherry Wu, Sicheng Song, M. Zhang
{"title":"具有不平衡数据量的自然语言处理任务的交互式注意模型浏览器","authors":"Zhihang Dong, Tongshuang Sherry Wu, Sicheng Song, M. Zhang","doi":"10.1109/PacificVis48177.2020.1031","DOIUrl":null,"url":null,"abstract":"Conventional attention visualization tools compromise either the readability or the information conveyed when documents are lengthy, especially when these documents have imbalanced sizes. Our work strives toward a more intuitive visualization for a subset of Natural Language Processing tasks, where attention is mapped between documents with imbalanced sizes. We extend the flow map visualization to enhance the readability of the attention-augmented documents. Through interaction, our design enables semantic filtering that helps users prioritize important tokens and meaningful matching for an in-depth exploration. Case studies and informal user studies in machine comprehension prove that our visualization effectively helps users gain initial understandings about what their models are \"paying attention to.\" We discuss how the work can be extended to other domains, as well as being plugged into more end-to-end systems for model error analysis.","PeriodicalId":322092,"journal":{"name":"2020 IEEE Pacific Visualization Symposium (PacificVis)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Interactive Attention Model Explorer for Natural Language Processing Tasks with Unbalanced Data Sizes\",\"authors\":\"Zhihang Dong, Tongshuang Sherry Wu, Sicheng Song, M. Zhang\",\"doi\":\"10.1109/PacificVis48177.2020.1031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional attention visualization tools compromise either the readability or the information conveyed when documents are lengthy, especially when these documents have imbalanced sizes. Our work strives toward a more intuitive visualization for a subset of Natural Language Processing tasks, where attention is mapped between documents with imbalanced sizes. We extend the flow map visualization to enhance the readability of the attention-augmented documents. Through interaction, our design enables semantic filtering that helps users prioritize important tokens and meaningful matching for an in-depth exploration. Case studies and informal user studies in machine comprehension prove that our visualization effectively helps users gain initial understandings about what their models are \\\"paying attention to.\\\" We discuss how the work can be extended to other domains, as well as being plugged into more end-to-end systems for model error analysis.\",\"PeriodicalId\":322092,\"journal\":{\"name\":\"2020 IEEE Pacific Visualization Symposium (PacificVis)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PacificVis48177.2020.1031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis48177.2020.1031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

当文档很长,特别是当这些文档的大小不平衡时,传统的注意力可视化工具会损害可读性或所传达的信息。我们的工作致力于为自然语言处理任务子集提供更直观的可视化,其中在大小不平衡的文档之间映射注意力。我们扩展了流程图可视化,以增强注意力增强文档的可读性。通过交互,我们的设计实现了语义过滤,帮助用户优先考虑重要的标记和有意义的匹配,以进行深入的探索。机器理解中的案例研究和非正式的用户研究证明,我们的可视化有效地帮助用户获得关于他们的模型“关注”什么的初步理解。我们讨论了如何将工作扩展到其他领域,以及如何插入到更多的端到端系统中进行模型错误分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive Attention Model Explorer for Natural Language Processing Tasks with Unbalanced Data Sizes
Conventional attention visualization tools compromise either the readability or the information conveyed when documents are lengthy, especially when these documents have imbalanced sizes. Our work strives toward a more intuitive visualization for a subset of Natural Language Processing tasks, where attention is mapped between documents with imbalanced sizes. We extend the flow map visualization to enhance the readability of the attention-augmented documents. Through interaction, our design enables semantic filtering that helps users prioritize important tokens and meaningful matching for an in-depth exploration. Case studies and informal user studies in machine comprehension prove that our visualization effectively helps users gain initial understandings about what their models are "paying attention to." We discuss how the work can be extended to other domains, as well as being plugged into more end-to-end systems for model error analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信