DocLangID:改进历史文献语言识别的几次训练

Furkan Simsek, Brian Pfitzmann, Hendrik Raetz, Jona Otholt, Haojin Yang, C. Meinel
{"title":"DocLangID:改进历史文献语言识别的几次训练","authors":"Furkan Simsek, Brian Pfitzmann, Hendrik Raetz, Jona Otholt, Haojin Yang, C. Meinel","doi":"10.1145/3604951.3605512","DOIUrl":null,"url":null,"abstract":"In this work, we propose DocLangID, a transfer learning approach to identify the language of unlabeled historical documents. We achieve this by first leveraging labeled data from a different but related domain of historical documents. Secondly, we implement a distance-based few-shot learning approach to adapt a convolutional neural network to new languages of the unlabeled dataset. By introducing small amounts of manually labeled examples from the set of unlabeled images, our feature extractor develops a better adaptability towards new and different data distributions of historical documents. We show that such a model can be effectively fine-tuned for the unlabeled set of images by only reusing the same few-shot examples. We showcase our work across 10 languages that mostly use the Latin script. Our experiments on historical documents demonstrate that our combined approach improves the language identification performance, achieving 74% recognition accuracy on the four unseen languages of the unlabeled dataset.","PeriodicalId":375632,"journal":{"name":"Proceedings of the 7th International Workshop on Historical Document Imaging and Processing","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DocLangID: Improving Few-Shot Training to Identify the Language of Historical Documents\",\"authors\":\"Furkan Simsek, Brian Pfitzmann, Hendrik Raetz, Jona Otholt, Haojin Yang, C. Meinel\",\"doi\":\"10.1145/3604951.3605512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose DocLangID, a transfer learning approach to identify the language of unlabeled historical documents. We achieve this by first leveraging labeled data from a different but related domain of historical documents. Secondly, we implement a distance-based few-shot learning approach to adapt a convolutional neural network to new languages of the unlabeled dataset. By introducing small amounts of manually labeled examples from the set of unlabeled images, our feature extractor develops a better adaptability towards new and different data distributions of historical documents. We show that such a model can be effectively fine-tuned for the unlabeled set of images by only reusing the same few-shot examples. We showcase our work across 10 languages that mostly use the Latin script. Our experiments on historical documents demonstrate that our combined approach improves the language identification performance, achieving 74% recognition accuracy on the four unseen languages of the unlabeled dataset.\",\"PeriodicalId\":375632,\"journal\":{\"name\":\"Proceedings of the 7th International Workshop on Historical Document Imaging and Processing\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Workshop on Historical Document Imaging and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3604951.3605512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Workshop on Historical Document Imaging and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3604951.3605512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了DocLangID,一种迁移学习方法来识别未标记的历史文档的语言。我们首先利用来自不同但相关的历史文档领域的标记数据来实现这一点。其次,我们实现了一种基于距离的少镜头学习方法,使卷积神经网络适应未标记数据集的新语言。通过从未标记的图像集中引入少量手动标记的示例,我们的特征提取器对新的和不同的历史文档数据分布具有更好的适应性。我们证明了这样的模型可以通过重复使用相同的少数镜头样本来有效地对未标记的图像集进行微调。我们展示了10种语言的作品,这些语言主要使用拉丁文字。我们在历史文档上的实验表明,我们的组合方法提高了语言识别性能,在未标记数据集的四种未见过的语言上实现了74%的识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DocLangID: Improving Few-Shot Training to Identify the Language of Historical Documents
In this work, we propose DocLangID, a transfer learning approach to identify the language of unlabeled historical documents. We achieve this by first leveraging labeled data from a different but related domain of historical documents. Secondly, we implement a distance-based few-shot learning approach to adapt a convolutional neural network to new languages of the unlabeled dataset. By introducing small amounts of manually labeled examples from the set of unlabeled images, our feature extractor develops a better adaptability towards new and different data distributions of historical documents. We show that such a model can be effectively fine-tuned for the unlabeled set of images by only reusing the same few-shot examples. We showcase our work across 10 languages that mostly use the Latin script. Our experiments on historical documents demonstrate that our combined approach improves the language identification performance, achieving 74% recognition accuracy on the four unseen languages of the unlabeled dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信