降维对人工神经网络用户认证性能的影响

S. Chauhan, K. Prema
{"title":"降维对人工神经网络用户认证性能的影响","authors":"S. Chauhan, K. Prema","doi":"10.1109/IADCC.2013.6514327","DOIUrl":null,"url":null,"abstract":"Security is an important concern for today's generation, where keystroke-scan had come out as a milestone. In this paper, a comparison approach is presented for user authentication using keystroke dynamics. Here we have shown the effect of Dimensionality Reduction techniques on the performance and the misclassification rate is between 9.17% and 9.53%. It helps in improving the performance of the system after reducing the dimensions of input data. We have used three dimensional reduction techniques like: Principal Component Analysis (PCA), Multidimensional scaling (MDS), and probabilistic PCA. Here, PCA provide 9.17% misclassification rate with better performance for keystroke samples of 10 users and each user is having 400 samples for the same password.","PeriodicalId":325901,"journal":{"name":"2013 3rd IEEE International Advance Computing Conference (IACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Effect of dimensionality reduction on performance in artificial neural network for user authentication\",\"authors\":\"S. Chauhan, K. Prema\",\"doi\":\"10.1109/IADCC.2013.6514327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security is an important concern for today's generation, where keystroke-scan had come out as a milestone. In this paper, a comparison approach is presented for user authentication using keystroke dynamics. Here we have shown the effect of Dimensionality Reduction techniques on the performance and the misclassification rate is between 9.17% and 9.53%. It helps in improving the performance of the system after reducing the dimensions of input data. We have used three dimensional reduction techniques like: Principal Component Analysis (PCA), Multidimensional scaling (MDS), and probabilistic PCA. Here, PCA provide 9.17% misclassification rate with better performance for keystroke samples of 10 users and each user is having 400 samples for the same password.\",\"PeriodicalId\":325901,\"journal\":{\"name\":\"2013 3rd IEEE International Advance Computing Conference (IACC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 3rd IEEE International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IADCC.2013.6514327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 3rd IEEE International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2013.6514327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

安全是当今这代人的一个重要问题,键盘扫描已经成为一个里程碑。本文提出了一种基于击键动力学的用户认证比较方法。结果表明,降维技术对分类性能的影响在9.17% ~ 9.53%之间。在降低了输入数据的维数后,有助于提高系统的性能。我们使用了三维降维技术,如主成分分析(PCA)、多维尺度(MDS)和概率PCA。这里,PCA对10个用户的击键样本提供了9.17%的误分类率和更好的性能,每个用户对相同的密码有400个样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of dimensionality reduction on performance in artificial neural network for user authentication
Security is an important concern for today's generation, where keystroke-scan had come out as a milestone. In this paper, a comparison approach is presented for user authentication using keystroke dynamics. Here we have shown the effect of Dimensionality Reduction techniques on the performance and the misclassification rate is between 9.17% and 9.53%. It helps in improving the performance of the system after reducing the dimensions of input data. We have used three dimensional reduction techniques like: Principal Component Analysis (PCA), Multidimensional scaling (MDS), and probabilistic PCA. Here, PCA provide 9.17% misclassification rate with better performance for keystroke samples of 10 users and each user is having 400 samples for the same password.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信