从人类演示中学习未指定对象的操作

K. Qian, Jun Xu, Ge Gao, Fang Fang, Xudong Ma
{"title":"从人类演示中学习未指定对象的操作","authors":"K. Qian, Jun Xu, Ge Gao, Fang Fang, Xudong Ma","doi":"10.1109/ICARCV.2018.8581080","DOIUrl":null,"url":null,"abstract":"Learning by Demonstration (LbD) allows robots to acquire manipulation skills through human demonstration. In this regard, it is a challenging task to perceive spatial-temporal relations between sub-activities and object affordance in human demonstrations, especially when they are under-specified. This work extends the Probability Graph Model based methods to incorporate high-level demonstration classification. We propose an approach to model the semantics of human demonstration using Programming Domain Description Language (PDDL). Therefore, hidden motion primitives that are impossible to be learned directly from observing human demonstration in noisy video data can be inferred and the robot's plans are refined. Experimental results validate the effectiveness of the proposed method, in which more refined scripts can be generated for robot's execution.","PeriodicalId":395380,"journal":{"name":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning Under-Specified Object Manipulations from Human Demonstrations\",\"authors\":\"K. Qian, Jun Xu, Ge Gao, Fang Fang, Xudong Ma\",\"doi\":\"10.1109/ICARCV.2018.8581080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning by Demonstration (LbD) allows robots to acquire manipulation skills through human demonstration. In this regard, it is a challenging task to perceive spatial-temporal relations between sub-activities and object affordance in human demonstrations, especially when they are under-specified. This work extends the Probability Graph Model based methods to incorporate high-level demonstration classification. We propose an approach to model the semantics of human demonstration using Programming Domain Description Language (PDDL). Therefore, hidden motion primitives that are impossible to be learned directly from observing human demonstration in noisy video data can be inferred and the robot's plans are refined. Experimental results validate the effectiveness of the proposed method, in which more refined scripts can be generated for robot's execution.\",\"PeriodicalId\":395380,\"journal\":{\"name\":\"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCV.2018.8581080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2018.8581080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

示范学习(LbD)允许机器人通过人类示范来获得操作技能。在这方面,在人类演示中感知子活动和对象提供性之间的时空关系是一项具有挑战性的任务,特别是当它们未被指定时。这项工作扩展了基于概率图模型的方法,以纳入高级演示分类。我们提出了一种使用编程领域描述语言(PDDL)对人类演示的语义建模的方法。因此,可以推断出在噪声视频数据中观察人类演示无法直接学习到的隐藏运动原语,并改进机器人的计划。实验结果验证了该方法的有效性,可以为机器人的执行生成更精细的脚本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Under-Specified Object Manipulations from Human Demonstrations
Learning by Demonstration (LbD) allows robots to acquire manipulation skills through human demonstration. In this regard, it is a challenging task to perceive spatial-temporal relations between sub-activities and object affordance in human demonstrations, especially when they are under-specified. This work extends the Probability Graph Model based methods to incorporate high-level demonstration classification. We propose an approach to model the semantics of human demonstration using Programming Domain Description Language (PDDL). Therefore, hidden motion primitives that are impossible to be learned directly from observing human demonstration in noisy video data can be inferred and the robot's plans are refined. Experimental results validate the effectiveness of the proposed method, in which more refined scripts can be generated for robot's execution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信