基于幂缩法的核主成分分析

Weiya Shi, Dexian Zhang
{"title":"基于幂缩法的核主成分分析","authors":"Weiya Shi, Dexian Zhang","doi":"10.1109/ICICISYS.2010.5658803","DOIUrl":null,"url":null,"abstract":"Kernel principal component analysis (KPCA) is a popular nonlinear feature extraction method. It generally uses eigen-decomposition technique to extract the principal components in feature space. But the method is infeasible for large-scale data set because of the storage and computational problem. To overcome these disadvantages, an efficient iterative method of computing kernel principal components is proposed. First, the Power iteration is introduced to compute the first eigenvalue and corresponding eigenvector. Then the deflation method is repeatedly applied to achieve other higher order eigenvectors. In the process of computation, the kernel matrix needs not to compute and store in advance. The space and time complexity of the proposed method is greatly reduced. The effectiveness of proposed method is validated from experimental results.","PeriodicalId":339711,"journal":{"name":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The power and deflation method based kernel principal component analysis\",\"authors\":\"Weiya Shi, Dexian Zhang\",\"doi\":\"10.1109/ICICISYS.2010.5658803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kernel principal component analysis (KPCA) is a popular nonlinear feature extraction method. It generally uses eigen-decomposition technique to extract the principal components in feature space. But the method is infeasible for large-scale data set because of the storage and computational problem. To overcome these disadvantages, an efficient iterative method of computing kernel principal components is proposed. First, the Power iteration is introduced to compute the first eigenvalue and corresponding eigenvector. Then the deflation method is repeatedly applied to achieve other higher order eigenvectors. In the process of computation, the kernel matrix needs not to compute and store in advance. The space and time complexity of the proposed method is greatly reduced. The effectiveness of proposed method is validated from experimental results.\",\"PeriodicalId\":339711,\"journal\":{\"name\":\"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICISYS.2010.5658803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2010.5658803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

核主成分分析(KPCA)是一种流行的非线性特征提取方法。一般采用特征分解技术提取特征空间中的主成分。但由于存储和计算问题,该方法在大规模数据集上不可行。为了克服这些缺点,提出了一种计算核主成分的有效迭代方法。首先,引入幂次迭代计算第一个特征值和对应的特征向量;然后,重复应用压缩方法来获得其他高阶特征向量。在计算过程中,核矩阵不需要预先计算和存储。该方法大大降低了空间复杂度和时间复杂度。实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The power and deflation method based kernel principal component analysis
Kernel principal component analysis (KPCA) is a popular nonlinear feature extraction method. It generally uses eigen-decomposition technique to extract the principal components in feature space. But the method is infeasible for large-scale data set because of the storage and computational problem. To overcome these disadvantages, an efficient iterative method of computing kernel principal components is proposed. First, the Power iteration is introduced to compute the first eigenvalue and corresponding eigenvector. Then the deflation method is repeatedly applied to achieve other higher order eigenvectors. In the process of computation, the kernel matrix needs not to compute and store in advance. The space and time complexity of the proposed method is greatly reduced. The effectiveness of proposed method is validated from experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信