用于运动任务的基于力的运动编辑

N. Pollard, Fareed Behmaram-Mosavat
{"title":"用于运动任务的基于力的运动编辑","authors":"N. Pollard, Fareed Behmaram-Mosavat","doi":"10.1109/ROBOT.2000.844128","DOIUrl":null,"url":null,"abstract":"This paper describes a fast technique for modifying motion sequences for complex articulated mechanisms in a way that preserves physical properties of the motion. This technique is relevant to the problem of teaching motion tasks by demonstration, because it allows a single example to be adapted to a range of situations. Motion may be obtained from any source, e.g., it may be captured from a human user. A model of applied forces is extracted from the motion data, and forces are scaled to achieve new goals. Each scaled force model is checked to ensure that frictional and kinematic constraints are maintained for a rigid body approximation of the character. Scale factors can be obtained in closed form, and constraints can be approximated analytically, making motion editing extremely fast. To demonstrate the effectiveness of this approach, we show that a variety of simulated jumps can be created by modifying a single key-framed jumping motion. We also scale a simulated running motion to a new character and to a range of new velocities.","PeriodicalId":286422,"journal":{"name":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Force-based motion editing for locomotion tasks\",\"authors\":\"N. Pollard, Fareed Behmaram-Mosavat\",\"doi\":\"10.1109/ROBOT.2000.844128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a fast technique for modifying motion sequences for complex articulated mechanisms in a way that preserves physical properties of the motion. This technique is relevant to the problem of teaching motion tasks by demonstration, because it allows a single example to be adapted to a range of situations. Motion may be obtained from any source, e.g., it may be captured from a human user. A model of applied forces is extracted from the motion data, and forces are scaled to achieve new goals. Each scaled force model is checked to ensure that frictional and kinematic constraints are maintained for a rigid body approximation of the character. Scale factors can be obtained in closed form, and constraints can be approximated analytically, making motion editing extremely fast. To demonstrate the effectiveness of this approach, we show that a variety of simulated jumps can be created by modifying a single key-framed jumping motion. We also scale a simulated running motion to a new character and to a range of new velocities.\",\"PeriodicalId\":286422,\"journal\":{\"name\":\"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.2000.844128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2000.844128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

本文描述了一种快速修改复杂关节机构的运动序列的技术,这种技术保留了运动的物理特性。这种技术与通过示范教学运动任务的问题有关,因为它允许单个示例适应一系列情况。运动可以从任何来源获得,例如,它可以从人类用户捕获。从运动数据中提取作用力模型,并对作用力进行缩放以实现新的目标。检查每个缩放力模型,以确保保持刚体近似特征的摩擦和运动学约束。尺度因子可以封闭形式得到,约束条件可以解析逼近,使得运动编辑速度极快。为了证明这种方法的有效性,我们展示了通过修改单个键帧跳跃运动可以创建各种模拟跳跃。我们还将模拟的跑步运动扩展到一个新的角色和一系列新的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Force-based motion editing for locomotion tasks
This paper describes a fast technique for modifying motion sequences for complex articulated mechanisms in a way that preserves physical properties of the motion. This technique is relevant to the problem of teaching motion tasks by demonstration, because it allows a single example to be adapted to a range of situations. Motion may be obtained from any source, e.g., it may be captured from a human user. A model of applied forces is extracted from the motion data, and forces are scaled to achieve new goals. Each scaled force model is checked to ensure that frictional and kinematic constraints are maintained for a rigid body approximation of the character. Scale factors can be obtained in closed form, and constraints can be approximated analytically, making motion editing extremely fast. To demonstrate the effectiveness of this approach, we show that a variety of simulated jumps can be created by modifying a single key-framed jumping motion. We also scale a simulated running motion to a new character and to a range of new velocities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信