Yating Zhou, Gang Wang, Hong Zhu, Jun Lu, Xiangfei Chen
{"title":"用于提高半导体激光器效率的非对称采样布拉格光栅结构","authors":"Yating Zhou, Gang Wang, Hong Zhu, Jun Lu, Xiangfei Chen","doi":"10.1117/12.2073460","DOIUrl":null,"url":null,"abstract":"An asymmetric sampled Bragg grating (SBG) semiconductor laser, which consists of two sections with same length but different sampling duty cycle, can be introduced an arbitrary equivalent-phase-shift (EPS) into its center. At the same time, to adjust the sampling duty cycles in the two sections as different magnitude, the studied laser can output more lasing power from its one facet than that from the other one. That is to say, this method can be used to design and fabricate the EPS SBG semiconductor laser with higher output efficiency.","PeriodicalId":164339,"journal":{"name":"Photonics Asia","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An asymmetric sampled Bragg grating structure for improving semiconductor laser efficiency\",\"authors\":\"Yating Zhou, Gang Wang, Hong Zhu, Jun Lu, Xiangfei Chen\",\"doi\":\"10.1117/12.2073460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An asymmetric sampled Bragg grating (SBG) semiconductor laser, which consists of two sections with same length but different sampling duty cycle, can be introduced an arbitrary equivalent-phase-shift (EPS) into its center. At the same time, to adjust the sampling duty cycles in the two sections as different magnitude, the studied laser can output more lasing power from its one facet than that from the other one. That is to say, this method can be used to design and fabricate the EPS SBG semiconductor laser with higher output efficiency.\",\"PeriodicalId\":164339,\"journal\":{\"name\":\"Photonics Asia\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2073460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2073460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An asymmetric sampled Bragg grating structure for improving semiconductor laser efficiency
An asymmetric sampled Bragg grating (SBG) semiconductor laser, which consists of two sections with same length but different sampling duty cycle, can be introduced an arbitrary equivalent-phase-shift (EPS) into its center. At the same time, to adjust the sampling duty cycles in the two sections as different magnitude, the studied laser can output more lasing power from its one facet than that from the other one. That is to say, this method can be used to design and fabricate the EPS SBG semiconductor laser with higher output efficiency.