社会影响非线性时间序列分析

Thinh Minh Do, Yasuko Matsubara, Yasushi Sakurai
{"title":"社会影响非线性时间序列分析","authors":"Thinh Minh Do, Yasuko Matsubara, Yasushi Sakurai","doi":"10.1145/2926693.2929902","DOIUrl":null,"url":null,"abstract":"In this paper, we present Δ-SPOT, a non-linear model for analysing large scale web search data, and its fitting algorithm. Δ-SPOT can forecast long-range future dynamics of the keywords/queries. We use the Google Search, Twitter and MemeTracker data set for extensive experiments, which show that our method outperforms other non-linear mining methods. We also provide an online algorithm contributing to the need of monitoring multiple co-evolving data sequences.","PeriodicalId":123723,"journal":{"name":"Proceedings of the 2016 on SIGMOD'16 PhD Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-linear Time-series Analysis of Social Influence\",\"authors\":\"Thinh Minh Do, Yasuko Matsubara, Yasushi Sakurai\",\"doi\":\"10.1145/2926693.2929902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present Δ-SPOT, a non-linear model for analysing large scale web search data, and its fitting algorithm. Δ-SPOT can forecast long-range future dynamics of the keywords/queries. We use the Google Search, Twitter and MemeTracker data set for extensive experiments, which show that our method outperforms other non-linear mining methods. We also provide an online algorithm contributing to the need of monitoring multiple co-evolving data sequences.\",\"PeriodicalId\":123723,\"journal\":{\"name\":\"Proceedings of the 2016 on SIGMOD'16 PhD Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 on SIGMOD'16 PhD Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2926693.2929902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 on SIGMOD'16 PhD Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2926693.2929902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一个用于分析大规模网络搜索数据的非线性模型Δ-SPOT及其拟合算法。Δ-SPOT可以预测关键字/查询的长期未来动态。我们使用Google Search, Twitter和MemeTracker数据集进行了广泛的实验,结果表明我们的方法优于其他非线性挖掘方法。我们还提供了一种在线算法,有助于监测多个共同进化的数据序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-linear Time-series Analysis of Social Influence
In this paper, we present Δ-SPOT, a non-linear model for analysing large scale web search data, and its fitting algorithm. Δ-SPOT can forecast long-range future dynamics of the keywords/queries. We use the Google Search, Twitter and MemeTracker data set for extensive experiments, which show that our method outperforms other non-linear mining methods. We also provide an online algorithm contributing to the need of monitoring multiple co-evolving data sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信