随机时延和丢包多传感器系统的分布式最优融合估计

Jiabing Sun, Chengjin Zhang
{"title":"随机时延和丢包多传感器系统的分布式最优融合估计","authors":"Jiabing Sun, Chengjin Zhang","doi":"10.1109/MFI.2012.6343075","DOIUrl":null,"url":null,"abstract":"This paper considers the distributed optimal (i.e., linear minimum variance) fusion estimation problems for two classes of networked multi-sensor systems. In the first class of systems, the sensors' measurements are transmitted via unreliable digital communication networks (DCN) to local estimators for obtaining local estimates of the state. Then the local estimates are fused in the fusion center to get the fusion estimate. The data transmission from local estimators to the fusion center is not via DCN. In the second class of systems, the sensors' measurements are processed locally to obtain local estimates of the state. Then, via DCN, the local estimates are transmitted to the fusion center where they are fused to get the fusion estimate. In these systems, the data transmission via DCN is subject to random delay and packet drop. The results of local estimation have been presented in the literature. The estimation error cross-covariances between local estimates are derived in this paper. By the fusion rule weighted by matrices, the distributed optimal fusion estimators are developed.","PeriodicalId":103145,"journal":{"name":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributed optimal fusion estimation for multi-sensor systems subject to random delay and packet drop\",\"authors\":\"Jiabing Sun, Chengjin Zhang\",\"doi\":\"10.1109/MFI.2012.6343075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the distributed optimal (i.e., linear minimum variance) fusion estimation problems for two classes of networked multi-sensor systems. In the first class of systems, the sensors' measurements are transmitted via unreliable digital communication networks (DCN) to local estimators for obtaining local estimates of the state. Then the local estimates are fused in the fusion center to get the fusion estimate. The data transmission from local estimators to the fusion center is not via DCN. In the second class of systems, the sensors' measurements are processed locally to obtain local estimates of the state. Then, via DCN, the local estimates are transmitted to the fusion center where they are fused to get the fusion estimate. In these systems, the data transmission via DCN is subject to random delay and packet drop. The results of local estimation have been presented in the literature. The estimation error cross-covariances between local estimates are derived in this paper. By the fusion rule weighted by matrices, the distributed optimal fusion estimators are developed.\",\"PeriodicalId\":103145,\"journal\":{\"name\":\"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2012.6343075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2012.6343075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了两类网络化多传感器系统的分布式最优(即线性最小方差)融合估计问题。在第一类系统中,传感器的测量值通过不可靠数字通信网络(DCN)传输给局部估计器,以获得局部状态估计。然后在融合中心对局部估计进行融合,得到融合估计。从局部估计器到融合中心的数据传输不通过DCN。在第二类系统中,对传感器的测量值进行局部处理以获得状态的局部估计。然后,通过DCN将局部估计传输到融合中心,在融合中心进行融合得到融合估计。在这些系统中,通过DCN传输的数据受到随机延迟和丢包的影响。局部估计的结果已在文献中提出。本文推导了局部估计之间的估计误差交叉协方差。利用矩阵加权的融合规则,建立了分布式最优融合估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed optimal fusion estimation for multi-sensor systems subject to random delay and packet drop
This paper considers the distributed optimal (i.e., linear minimum variance) fusion estimation problems for two classes of networked multi-sensor systems. In the first class of systems, the sensors' measurements are transmitted via unreliable digital communication networks (DCN) to local estimators for obtaining local estimates of the state. Then the local estimates are fused in the fusion center to get the fusion estimate. The data transmission from local estimators to the fusion center is not via DCN. In the second class of systems, the sensors' measurements are processed locally to obtain local estimates of the state. Then, via DCN, the local estimates are transmitted to the fusion center where they are fused to get the fusion estimate. In these systems, the data transmission via DCN is subject to random delay and packet drop. The results of local estimation have been presented in the literature. The estimation error cross-covariances between local estimates are derived in this paper. By the fusion rule weighted by matrices, the distributed optimal fusion estimators are developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信